Schlussbericht

zu dem IGF-Vorhaben

Weiterentwicklung von Bemessungs- und Konstruktionsregeln bei großen Stabdurchmessern (> d = 32 mm, B500)

der Forschungsstelle(n)

RWTH Aachen, Lehrstuhl und Institut für Massivbau

Technische Universität Braunschweig, Institut für Baustoffe, Massivbau und Brandschutz

Technische Universität Kaiserslautern, Fachgebiet Massivbau und Baukonstruktion

Das IGF-Vorhaben 16992N/1 der Forschungsvereinigung Gemeinschaftsausschuss Kaltformgebung e.V. wurde über die

im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Prof. Dr.-Ing. Josef Hegger

Prof. Dr.-Ing. Martin Empelmann

Prof. Dr.-Ing. Jürgen Schnell Name und Unterschrift des/der Projektleiter(s) an der/den Forschungsstelle(n)

INHALT

I.	DANKSAGUNGII
П.	VERWENDUNG DER ZUWENDUNGIII
III.	ERGEBNISIII
IV.	NOTWENDIGKEIT UND ANGEMESSENHEIT DER GELEISTETEN ARBEITEN.III
V.	NUTZEN DER ERZIELTEN ERGEBNISSEIII
VI.	VERÖFFENTLICHUNGENV
VII.	ERGEBNISTRANSFERPLANVI

I. Danksagung

Das IGF-Vorhaben 16992N/1 der Forschungsvereinigung Gemeinschaftsausschuss Kaltformgebung e.V. wurde durch die Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) im Rahmen des Programmes zur Förderung der industriellen Gemeinschaftsforschung und entwicklung (IGF) vom Bundesministerium für Wirtschaft und Technologie bzw. dem heutigen Bundesministerium für Wirtschaft und Energie gefördert. Folgende Unternehmen und Institutionen waren im projektbegleitenden Ausschuss vertreten:

Unternehmen, Institution:	vertreten durch:
Badische Stahlwerke GmbH	DiplIng. Jürgen Schulz
BAG Mannheim mbH	DiplIng. Michael Krebs
BORAPA Ingenieurgesellschaft mbH	DrIng. Rolf Wörner
Jordahl GmbH	DrIng. Alexander Lindorf
Elementa Betonfertigteile GmbH	DiplIng. Christian Filsinger
Kämpfe Stahl- und Bewehrungsbau GmbH	DrIng. Hansgerd Kämpfe
Krebs und Kiefer	DrIng. Hans-Gerd Lindlar
Schüßler-Plan Ing. GmbH	DiplIng. Ingo Müllers
Stahlwerk Annahütte Max Aicher GmbH & Co.KG	DiplIng. Florian Hogger
Institut für Stahlbetonbewehrung e.V.	DrIng. Jörg Moersch
European Engineered Construction Systems Association	Dr.Ing. Thomas Sippel

Dem Bundesministerium für Wirtschaft und Technologie, der Arbeitsgemeinschaft industrieller Forschungsvereinigungen, der Forschungsvereinigung Gemeinschaftsausschuss Kaltformgebung e.V. sowie der Beratergruppe sei an dieser Stelle für die gewährte Unterstützung herzlich gedankt. Den Firmen Max Aicher GmbH & Co. KG und Badische Stahlwerke GmbH sei für die Unterstützung mit Versuchsmaterial ebenfalls herzlich gedankt.

II.Verwendung der Zuwendung

Der Mittelabfluss erfolgte gemäß Finanzierungsplan. Das wissenschaftlich-technische Personal wurde gemäß Finanzierungsplan eingesetzt. Für die durchgeführten Untersuchungen wurden die wissenschaftlichen Mitarbeiter in Teil- bzw. Vollzeit beschäftigt.

Für die durchzuführenden Arbeiten wurden an den Forschungsstellen drei wissenschaftliche Mitarbeiter beschäftigt. Die von den PbA-Mitgliedern zur Verfügung gestellten Bewehrungsstäbe wurden zur Herstellung der Versuchskörper verwendet.

III. Ergebnis

Die Ergebnisse des Forschungsprojektes werden in diesem Bericht im Folgenden von den beteiligten Forschungsstellen umfangreich erläutert.

IV. Notwendigkeit und Angemessenheit der geleisteten Arbeiten

Die geleistete Arbeit entspricht in vollem Umfang dem begutachteten und bewilligten Antrag und war daher für die Durchführung des Vorhabens notwendig und angemessen.

V. Nutzen der erzielten Ergebnisse

a. Wissenschaftlich technischer Nutzen der erzielten Ergebnisse

- Die verschärften Anforderung an die Mindestbauteildicke von Stahlbetonstützen nach DIN EN 1992-1-1/NA mit großen Bewehrungsdurchmessern ist nicht erforderlich.
- Die Zusatzregelungen f
 ür die B
 ügeldurchmesser und den B
 ügelabstand in Stahlbetonst
 ützen mit gro
 ßen Bewehrungsdurchmessern nach DIN EN 1992-1-1/NA k
 önnen entfallen.
- Die zulässige Stabanzahl in den Ecken von Stahlbetonstützen muss beim Einsatz großer Bewehrungsdurchmesser reduziert werden.
- Auf einen rechnerischen Nachweis der Rissbreite von Stahlbetonbauteilen kann verzichtet werden, wenn bestimmte Oberflächenbewehrungsmengen vorhanden sind und die nach DIN EN 1992-1-1 üblichen Rissbreiten zulässig sind.
- Es wird ein modifizierter Bemessungsvorschlag f
 ür einen genaueren Rissbreitennachweis vorgestellt.
- Die erforderliche Oberflächenbewehrung nach DIN EN 1992-1-1/NA kann unter bestimmten Voraussetzungen reduziert werden.
- Die Zusatzregelungen nach DIN EN 1992-1-1/NA f
 ür
 Übergreifungsst
 öße in Stahlbetonbauteilen mit gro
 ßen Bewehrungsstabdurchmessern hinsichtlich des Sto
 ßanteils, der Mindestbauteildicke und der zul
 ässigen H
 öchstspannung k
 önnen entfallen.

b. Wirtschaftlicher Nutzen der erzielten Ergebnisse

- Tragwerksplaner müssen bei der Bemessung von Stahlbetonkonstruktionen mit großen Bewehrungsdurchmessern weniger Nachweise erbringen, da eine Reihe von Zusatzregelungen nach DIN EN 1992-1-1 nicht mehr erforderlich sind. Für die Zielgruppe der Architektur- und Ingenieurbüros, in der Regel kleine und mittelständische Unternehmen, ergeben sich neue konstruktive Gestaltungsmöglichkeiten.
- Die f
 ür den Einsatz von gro
 ßen Bewehrungsdurchmessern zus
 ätzlich einzubauende Oberfl
 ächenbewehrung ist in geringerem Umfang als bisher erforderlich, so dass Bewehrungsmengen
 eingespart werden k
 önnen und die Bewehrungsarbeiten vereinfacht werden.
- Aufgrund der entfallenen Zusatzregelungen sinkt die bestehende Zurückhaltung von Tragwerksplanern, Architekten, Baufirmen, Fertigteilwerken und Bauherren beim Einsatz von Bewehrung mit großen Stabdurchmessern.

- Stahlbetonkonstruktionen mit hohen erforderlichen Bewehrungsgraden werden funktionaler und wirtschaftlicher, da eine große Anzahl von kleinen Bewehrungsdurchmessern durch eine geringere Anzahl von großen Bewehrungsdurchmessern ersetzt werden kann, davon profitieren Bauherren und bauausführende Unternehmen jeder Größe.
- Für Bauunternehmen wird das Risiko von Ausführungsmängeln vermindert, die auf eine schlechte Betonierbarkeit bei der Bewehrungsverdichtung zurückzuführen sind, wenn die erforderliche Bewehrungsstabanzahl durch den Einsatz großer Bewehrungsdurchmesser reduziert werden kann.
- Ein weiterer wirtschaftlicher Nutzen besteht f
 ür kleine und mittelst
 ändische Betonfertigteilwerke, die ihre Angebotspalette um Stahlbetonbauteile bewehrt mit gro
 ßen Stabdurchmessern erweitern k
 önnen.

c. Einschätzung zur Realisierbarkeit

Der Einsatz von Bewehrungsstäben mit großen Stabdurchmessern ist nach den geltenden Normen für Stahlbetonkonstruktionen bereits zulässig. Da die Normung eine große Anzahl von Zusatzregelungen für die Anwendung von großen Stabdurchmessern vorschreibt, werden diese Stäbe bisher nur zurückhaltend eingesetzt. Bauausführende Firmen und Bauherren setzen diese Stäbe aufgrund der zusätzlich erforderlichen Bewehrungsmengen nur in wenigen Fällen ein. Auch bei Tragwerksplanern und Architekten bestehen wegen der zahlreichen Detailnachweise bisher vorbehalte.

Aufgrund der Überprüfung der Zusatzregelungen können die großen Stabdurchmesser in der Zukunft sicherer angewendet werden. Insbesondere infolge der Erkenntnis, dass einige zusätzliche Bewehrungsmengen und Einschränkungen bei der Konstruktion nicht erforderlich sind, kann die Zurückhaltung von Bauherren, Baufirmen, Architekten und Tragwerksplanern überwunden werden. Als Folge wird Bewehrung mit großen Stabdurchmessern in absehbarer Zukunft verstärkt eingesetzt werden.

Der technische und wirtschaftliche Nutzen des Einsatzes großer Stabdurchmesser konnte im Rahmen des Forschungsprojektes nachgewiesen werden. Bewehrungsstäbe mit großen Stabdurchmessern bieten insbesondere bei der Konstruktion von hochbelasteten Stützen, bei massigen Bauteilen im Tief-, Wasser- und Industriebau, sowie in hochbewehrten Bauteilen, wie in Abfangträgern, Pfahlkopfplatten und Senkkästen wirtschaftliche Vorteile.

Als weiterer Schritt Richtung Umsetzung der Forschungsergebnisse muss der geltende Text der aktuellen Stahlbetonnormung (DIN EN 1992-1-1 und DIN EN 1992-1-1/NA) geändert werden, damit Baufirmen und Tragwerksplaner die neuen Erkenntnissen nutzen können. Alle drei am Forschungsprojekt beteiligten Institute sind aktiv in der europäischen Normungsarbeit und können aufgrund des Forschungsprojektes Normtextänderungen anregen.

Das Projektziel wird daher als "erreicht" eingestuft.

Die bei der Bearbeitung neu aufgeworfenen Fragestellungen sollte in einem Nachfolgeantrag geklärt werden.

VI. Veröffentlichungen

a. Bisherige Veröffentlichungen im Rahmen des Forschungsvorhabens

- Empelmann, M.: Bewehrungstechniken nach EC2, 1. Jahrestagung des DAfStb und 54. Forschungskolloquium in Bochum, 07.11.2013
- Empelmann, M.; Oettel, V.: Bewehrungstechniken nach EC2. In: beton 63 (10/2013), S. 386-387.
- Empelmann, M.; Oettel, V.; Kim, S.: Innovative Stützen für den Hochhausbau. In: Massivbau im Wandel, Festschrift zum 60. Geburtstag von Josef Hegger. S. 123-134, Ernst & Sohn, Berlin, 2014.
- Hegger, J.; Schnell, J.; Empelmann, M.: Weiterentwicklung von Bemessungs- und Konstruktionsregeln bei großen Stabdurchmessern (> Ø32 mm, B500), 2. Jahrestagung und 55. Forschungskolloquium des DAfStb in Düsseldorf, 26.11.2014
- Schäfer, M.; Schnell, J.: Crack width of concrete elements reinforced with large diameter bars. In: Current Scientific Challenges in Concrete and Steel Structures, Material Technology and Structural Fire Protection, Schriftenreihe Bauingenieurwesen, Band 18, Kaiserslautern, 2014, S. 135-143.

b. Geplante Veröffentlichungen

- Schoening, J.; Hegger, J.: Große Stabdurchmesser Verbundverhalten, Beton- und Stahlbetonbau, Beton- und Stahlbetonbau, September 2015
- Schäfer, M.; Schnell, J.: Große Stabdurchmesser Rissbreiten und Oberflächenbewehrung, Beton- und Stahlbetonbau, September 2015
- Oettel, V.; Empelmann, M.: Große Stabdurchmesser Tragverhalten von Druckgliedern, Betonund Stahlbetonbau, September 2015
- Schoening, J.; Hegger, J.: Large Diameters Bond Behaviour, Structural Concrete, 2015
- Schäfer, M.; Schnell, J.: Large Diameters Crack Width and Surface Reinforcement, Structural Concrete, 2015
- Oettel, V.; Empelmann, M.: Large Diameters Structural Behaviour of Columns, Structural Concrete, 2015
- Schoening, J.; Hegger, J.: Große Stabdurchmessern (> Ø32 mm, B500) Verbundfestigkeit und Übergreifungsstöße, DAfStb-Heft, 2016
- Schäfer, M.; Schnell, J.: Große Stabdurchmessern (> Ø32 mm, B500) Rissbreiten und Oberflächenbewehrung, DAfStb-Heft, 2016
- Oettel, V.; Empelmann, M.: Große Stabdurchmessern (> Ø32 mm, B500) Tragverhalten von Druckgliedern, DAfStb-Heft, 2016
- Schoening, J.; Hegger, J.: Concrete Elements Reinforced with Large Diameters Part 1: Bond behavior and lapped splices, fib symposium 2015, Kopenhagen, 18.05-20.05.2015
- Schäfer, M.; Schnell: Concrete Elements Reinforced with Large Diameters Part 2: Crack width, fib symposium 2015, Kopenhagen, 18.05-20.05.2015
- Oettel, V.; Empelmann, M.: Concrete Elements Reinforced with Large Diameters Part 3: Columns, fib symposium 2015, Kopenhagen, 18.05-20.05.2015

VII. Ergebnistransferplan

- Maßnahmen während der Projektlaufzeit

Maßnahme	Ziel	Rahmen	Datum / Zeit
Gezielte Ansprache potentiell interes- sierter Unterneh- men	Wissenstransfer und Interessenabstim- mung	Aktiver Dialog mit den Teilneh- mern	Ab Juli 2012
Projekthomepage	Umfassende Infor- mation	Öffentlicher Bereich mit Vorstel- lung von ausgewählten Ergebnis- sen	Ab Januar 2013
Integration in Lehrveranstaltung	Wissensvermittlung und Einbeziehung neuester For- schungsergebnisse in die Lehrveranstal- tungen zur Beweh- rung von Stahlbeton- bauteilen	RWTH Aachen 3 Bachelorarbeiten (Nonn, Sarac, Detambel) 2 Masterarbeiten (Boesen, Marx) TU Kaiserslautern 2 Studienarbeiten (Habimana, Khatanbaatar) TU Braunschweig 1 Studienarbeit (Wang) 2 Bachelorarbeiten (Book, Keie) 1 Masterarbeit (Wichert)	Ab Januar 2013
Projektbegleitender Ausschuss	Kontinuierliche Diskussion der Forschungsergeb- nisse	Vorstellung von ausgewählten Ergebnissen (halbjährliche Sit- zungen)	07.12.2012 07.06.2013 02.12.2013 06.06.2014 07.10.2014
1. Jahrestagung und 54. For- schungskolloquium des DAfStb in Bochum	Wissenstransfer in die Wirtschaft	Vorstellung von Ergebnissen im Rahmen der Jahrestagung	07.11.2013
2. Jahrestagung und 55. For- schungskolloquium des DAfStb in Düsseldorf	Wissenstransfer in die Wirtschaft	Vorstellung von Ergebnissen im Rahmen der Jahrestagung (Download auch im Internet möglich)	26.11.2014

- Geplante Maßnahmen nach Ablauf der Projektlaufzeit

Maßnahme	Ziel	Rahmen	Datum / Zeit
Projekthomepage	Veröffentlichung der	Bereitstellung des Schlussbe-	Januar 2015
	Ergebnisse	richts zum Download	
Veröffentlichung	Wissenstransfer in	Beton- und Stahlbetonbau,	Ausgabe
	die Wirtschaft	Verlag Ernst & Sohn	September
			2015
Veröffentlichung	Wissenstransfer in	Structural Concrete – Journal of	2015
	die Wirtschaft	the fib, Verlag Ernst & Sohn	
Veröffentlichung	Wissenstransfer in	DAfStb-Heft	2016
	die Wirtschaft sowie		
	Weiterentwicklung		
	der Normen		
Normungsarbeit	Anpassung und	Berücksichtigung der Ergebnis-	Ab Juli 2014
	Weiterentwicklung	se in DIN EN 1992-1-1	
	der Normen		
Fib Symposium	Vorstellung der	Themenspezifische internationa-	18.05
2015 Kopenhagen	Ergebnisse	le Konferenz	20.05.2015
(Fédération interna-			
tional du béton /			
International Fed-			
eration for Structur-			
al Concrete)			
Ulmer Betontage	Wissenstransfer in	Vorstellung von Ergebnissen auf	Februar 2016
2016	die Wirtschaft	Tagungen	

Das vorgeschlagene Konzept für den Transfer der Ergebnisse ist ohne abzusehende Schwierigkeiten in allen Punkten realisierbar.

Weiterentwicklung von Bemessungsund Konstruktionsregeln bei großen Stabdurchmessern (> \ophi 32 mm, B500)

Verbundfestigkeit und Übergreifungsstöße

Institutsbericht-Nr.: 341/2015

des Instituts für Massivbau der RWTH Aachen

Josef Hegger

Janna Schoening

1	EINLEITUNG4
1.1	Veranlassung4
1.2	Zielsetzung4
2	STAND DER KENNTNISSE
2.1	Verbund4
2.1.1	Verbundmechanismen4
2.1.2	Versagensarten5
2.1.3	Werte der Verbundspannungen5
2.2	Verankerung6
2.3	Übergreifungsstöße6
2.4	Einflussparameter auf den Verbund6
2.5	Normative Erfassung der Verbundmechanismen9
2.5.1	DIN EN 1992-1-1 /1/9
2.5.2	DIN EN 1992-1-1/NA /2/9
2.5.3	Sonderregelungen für große Stabdurchmesser nach /1/ und /2/10
2.5.4	Model Code 2010 /8/
2.6	Versuchskörper zur Untersuchung des Verbundes11
2.7	Versuchsanordnung für Übergreifungen13
3	EXPERIMENTELLE UNTERSUCHUNGEN13
31	
0.1	Allgemeines
3.2	Allgemeines
3.2 3.3	Allgemeines
3.2 3.3 3.3.1	Allgemeines 13 Untersuchungsparameter 13 Baustoffe 15 Beton 15
3.2 3.3 3.3.1 3.3.2	Allgemeines 13 Untersuchungsparameter 13 Baustoffe 15 Beton 15 Bewehrungsstahl 17
3.2 3.3 3.3.1 3.3.2 3.4	Allgemeines 13 Untersuchungsparameter 13 Baustoffe 15 Beton 15 Bewehrungsstahl 17 Beam-End Versuche 18
3.2 3.3 3.3.1 3.3.2 3.4 3.5	Allgemeines 13 Untersuchungsparameter 13 Baustoffe 15 Beton 15 Bewehrungsstahl 17 Beam-End Versuche 18 Vierpunkt-Biegeversuche 20
3.2 3.3 3.3.1 3.3.2 3.4 3.5 4	Allgemeines 13 Untersuchungsparameter 13 Baustoffe 15 Beton 15 Bewehrungsstahl 17 Beam-End Versuche 18 Vierpunkt-Biegeversuche 20 VERSUCHSERGEBNISSE 24
3.2 3.3 3.3.1 3.3.2 3.4 3.5 4 4.1	Allgemeines 13 Untersuchungsparameter 13 Baustoffe 15 Beton 15 Bewehrungsstahl 17 Beam-End Versuche 18 Vierpunkt-Biegeversuche 20 VERSUCHSERGEBNISSE 24 Beam-End Versuche 24
3.2 3.3 3.3.1 3.3.2 3.4 3.5 4 4.1 4.1.1	Allgemeines 13 Untersuchungsparameter 13 Baustoffe 15 Beton 15 Bewehrungsstahl 17 Beam-End Versuche 18 Vierpunkt-Biegeversuche 20 VERSUCHSERGEBNISSE 24 Beam-End Versuche 24 Verbundfestigkeit der untersuchten Bewehrungsstäbe 24
3.2 3.3 3.3.1 3.3.2 3.4 3.5 4 4.1 4.1.1 4.1.2	Allgemeines 13 Untersuchungsparameter 13 Baustoffe 15 Beton 15 Bewehrungsstahl 17 Beam-End Versuche 18 Vierpunkt-Biegeversuche 20 VERSUCHSERGEBNISSE 24 Beam-End Versuche 24 Ream-End Versuche 24 Verbundfestigkeit der untersuchten Bewehrungsstäbe 24 Rissbildung 25
3.2 3.3 3.3.1 3.3.2 3.4 3.5 4 4.1 4.1.1 4.1.2 4.1.3	Allgemeines 13 Untersuchungsparameter 13 Baustoffe 15 Beton 15 Bewehrungsstahl 17 Beam-End Versuche 18 Vierpunkt-Biegeversuche 20 VERSUCHSERGEBNISSE 24 Beam-End Versuche 24 Verbundfestigkeit der untersuchten Bewehrungsstäbe 24 Rissbildung 25 Einfluss des Stabdurchmessers 26
3.2 3.3 3.3.1 3.3.2 3.4 3.5 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4	Allgemeines 13 Untersuchungsparameter 13 Baustoffe 15 Beton 15 Bewehrungsstahl 17 Beam-End Versuche 18 Vierpunkt-Biegeversuche 20 VERSUCHSERGEBNISSE 24 Beam-End Versuche 24 Verbundfestigkeit der untersuchten Bewehrungsstäbe 24 Rissbildung 25 Einfluss des Stabdurchmessers 26 Einfluss der Rippung 27

7	LITERATURVERZEICHNIS	49
6	ZUSAMMENFASSUNG UND OFFENE FRAGESTELLUNGEN	48
5.3	Zusammenfassung der Beurteilung der normativen Regelungen	46
5.2	Anordnung von Übergreifungsstößen	45
5.1	Querbewehrung zur Umschnürung des Verbundbereiches	44
5	BEURTEILUNG DER NORMATIVEN ZUSATZREGELN	44
4.3	Zusammenfassung der Versuchsergebnisse	43
4.2.8	Einfluss der Querbewehrung bzw. der Oberflächenbewehrung	41
4.2.7	Einfluss des Stababstandes	40
4.2.6	Einfluss der Betondeckung	39
4.2.5	Einfluss der Übergreifungslänge	38
4.2.4	Einfluss der Betondruckfestigkeit	37
4.2.3	Einfluss des Stabdurchmessers	36
4.2.2	Rissbildung der Biegeversuche	34
4.2.1	Tragverhalten der Übergreifungsstöße	32
4.2	Vierpunkt-Biegeversuche	32
4.1.9	Verankerung durch Schlaufen	31
4.1.8	Einfluss des Querdrucks	30
4.1.7	Einfluss der Querbewehrung	29
4.1.6	Einfluss der Betondeckung	28

1 Einleitung

1.1 Veranlassung

Der Einsatz von Betonstählen mit großen Durchmessern > ϕ 32 mm kann technisch, wirtschaftlich und zeitlich vorteilhaft sein. Bei hoch bewehrten Konstruktionen können durch den Einsatz von großen Bewehrungsdurchmessern wesentliche Vereinfachungen in der Bewehrungsführung erzielt werden. Die Anzahl der Bewehrungslagen kann verringert werden, während sich die statische Nutzhöhe vergrößert. Der Arbeitsaufwand beim Verlegen reduziert sich infolge der geringeren Stabanzahl und der Vermeidung von Stabbündeln. Durch die größeren Stababstände wird das Betonieren und Verdichten des Betons erleichtert. Dadurch wird die Bewehrung zuverlässiger mit Beton umschlossen und ein dauerhafter Korrosionsschutz sichergestellt.

Bewehrungsstäbe mit einem Durchmesser von bis zu 40 mm können nach der geltenden Stahlbetonnorm DIN EN 1992-1-1 /1/ bereits heute eingesetzt werden. Die baupraktische Anwendung von Stabdurchmessern > ϕ 28 mm wurde in Deutschland in der Vergangenheit durch Allgemeine bauaufsichtliche Zulassungen (AbZ) des Deutschen Instituts für Bautechnik (DIBt) geregelt. Die Erweiterung der Normen für große Durchmesser erfolgte durch Übernahme von Konstruktionsregeln aus den AbZ und durch eine Übertragung der vorhandenen normativen Regeln für Stabbündel. Systematische Untersuchungen zur Herleitung der Bemessungsansätze und Konstruktionsregeln für Durchmesser > ϕ 32 mm fehlen allerdings bisher.

1.2 Zielsetzung

In DIN EN 1992-1-1 /1/ und DIN EN 1992-1-1/NA /2/ stehen Bemessungsregeln und konstruktive Regeln für Bewehrungsstäbe von bis zu 40 mm zur Verfügung. Darin enthalten sind zusätzlich geltende Sonderregeln für große Stabdurchmesser (ϕ > 32 mm). Ziel der vorliegenden Untersuchung war es, die Übertragbarkeit der Regelungen hinsichtlich des Verbundes für kleine Durchmesser auf große Stabdurchmesser zu verifizieren. Außerdem sollten die erforderlichen Zusatzregelungen für Übergreifungsstöße überprüft werden. Das Verbundverhalten großer Stabdurchmesser sollte auf Grundlage von Verbundversuchen analysiert werden. Dazu wurden Ausziehversuche und Versuche an Übergreifungsstößen durchgeführt.

Es sollte untersucht werden, ob der Bemessungswert der Verbundfestigkeit nach DIN EN 1992-1-1 /1/ für große Stabdurchmesser gültig ist, oder ob eine Abminderung erforderlich ist. Außerdem sollte geklärt werden, ob Verankerungen und Übergreifungen der Längsbewehrung nach DIN EN 1992-1-1 /1/ für alle Stabdurchmesser 8 mm bis 40 mm gleichermaßen ausgeführt werden können oder ob für große Stabdurchmesser zusätzliche Maßnahmen ergriffen werden müssen.

Aufgrund der erwarteten größeren Spaltneigung der großen Stabdurchmesser wurde eine stärkere Rissentwicklung vermutet. Da die Betondeckung beim Einsatz großer Stabdurchmesser tendenziell größer ist, waren größere Rissbreiten zu erwarten. Nach DIN EN 1992-1-1 /1/ gibt es daher eine Zusatzregelung für große Stabdurchmesser, die den Einsatz einer zusätzlichen Oberflächenbewehrung zur Rissbreitenbegrenzung vorsieht. Im Rahmen des Forschungsvorhabens wurde die Wirksamkeit und Notwendigkeit der Oberflächenbewehrung untersucht.

Für Übergreifungsstöße großer Stabdurchmesser gelten nach DIN EN 1992-1-1 /1/ besonders strenge Regelungen. Es werden Stoßanteil, Bauteildicke, Maximalspannung und weitere Konstruktionsregeln vorgegeben. Ziel des Forschungsvorhabens war die Überprüfung dieser Regelungen zur etwaigen Vermeidung der zusätzlichen Maßnahmen für große Stabdurchmesser.

2 Stand der Kenntnisse

2.1 Verbund

2.1.1 Verbundmechanismen

Die in Stahlbetonbauteilen vorhandene Kraft in einem Bewehrungsstab kann über Verbund auf den Beton übertragen werden. Der Verbund besteht aus den Anteilen Haftverbund, Scherverbund und Reibung. Schon bei sehr geringen Relativverschiebungen zwischen Stahl und Beton wird der Haftverbund überwunden. Bei gerippten und profilierten Bewehrungsstäben wird die Kraft dann über eine Verzahnung der Stahlrippen mit den dazwischenliegenden Betonkonsolen übertragen (Scherverbund). Bei großen Relativverschiebungen

wirkt zusätzlich eine Reibung in der Kontaktfläche, da die Querdehnung des Betons behindert wird und eine Querpressung durch Schwinden vorhanden ist.

Der Verbund einer Bewehrung mit dem umgebenden Beton kann anhand einer Verbundspannungs-Schlupfkurve, die in Verbundversuchen bestimmt werden kann, charakterisiert werden. Die Verbundspannung τ wird bei Versuchen mit einer kurzen Verbundlänge als konstant über die Verbundlänge I_b angenommen und ergibt sich so aus der im Versuch aufgebrachten Kraft F:

$$\tau = \frac{\mathsf{F}}{\pi \cdot \phi \cdot \mathsf{I}_{\mathsf{b}}} \tag{2-1}$$

Die von den Stahlrippen ausgehenden Druckstreben erzeugen einen Zugring im umgebenden Beton (Bild 2-1 links), der zu einer Rissentwicklung im Verbundbereich führen kann (Bild 2-1 rechts).

Bild 2-1: Räumlicher Spannungszustand eines Ankerkörpers /10/ (links), Abscheren der Betonkonsolen (rechts)

2.1.2 Versagensarten

Die Tragfähigkeit des Verbundes von Bewehrungsstäben und umgebenden Beton ist durch zwei Versagensmechanismen begrenzt. So wird die Bewehrung entweder aus dem Beton herausgezogen (Pull-out) oder der umgebende Beton wird infolge der Ringzugspannungen aufgespalten (Spaltversagen).

Bei guter Verbundwirkung und kleiner Betondeckung stellt sich ein frühzeitiges Verbundversagen durch ein Spaltversagen ein. Die ringförmigen Querzugspannungen führen zu vom Bewehrungsstab ausgehenden Mikrorissen, die die übertragbaren Verbundspannungen reduzieren /3/. Sobald die Ringzugspannungen die aufnehmbare Zugkraft des Betons überschreiten (Bild 2-1) setzen sich die Risse bis zur Oberfläche des Betons fort und werden dort als Längsrisse sichtbar /4/. Bei hoher Belastung platzt die Betondeckung infolge der Sprengrissbildung ab.

2.1.3 Werte der Verbundspannungen

Während eines Verbundversuchs, in dem ein Bewehrungsstab aus dem Beton herausgezogen wird, werden Kräfte in Abhängigkeit der Relativverschiebungen (Schlupfwerte) des Stahls gegenüber dem Beton aufgezeichnet. Für verschiedene Zwecke kann die Angabe unterschiedlicher Verbundkennwerte und Schlupfwerte sinnvoll sein. Der Schlupf im Verbundbereich korrespondiert mit der Rissbreite, da die halbe Rissbreite der Relativverschiebung zwischen Stahl und Beton entspricht. Im Grenzzustand der Tragfähigkeit ist die maximale Verbundfestigkeit unabhängig von der Rissbreite maßgebend. Für diesen Zustand ist daher die maximale Verbundfestigkeit unabhängig von der Größe des dazugehörigen Schlupfes von Interesse. Da für den Grenzzustand der Gebrauchstauglichkeit dagegen eine Rissbreitenbegrenzung erforderlich ist, werden kleine Rissbreiten (kleine Schlupfwerte) zwischen Stahl und Bewehrung und gleichzeitig ausreichend große Verbundfestigkeiten angestrebt. Nach einem Vorschlag des Technischen Ausschusses Bewehrung des Deutschen Ausschuss für Stahlbeton /5/ sollten bei der Durchführung von Verbundversuchen mindestens die Verbundfestigkeiten bei einem Schlupf von 0,01 mm, 0,1 mm sowie die maximale Verbundfestigkeit mit dem dazugehörigen Schlupf dokumentiert werden.

2.2 Verankerung

Zur Bestimmung erforderlicher Verankerungslängen von Bewehrungsstäben in Stahlbetonbauteilen ist die Kenntnis der Verbundfestigkeit notwendig. Während in einem Ausziehversuch die Verbundfestigkeit als konstant über die Verbundlänge angenommen wird, gilt dies für längere Verankerungen nicht mehr. Dennoch werden die erforderlichen Verankerungslängen anhand der im Verbundversuch ermittelten Verbundfestigkeit bestimmt. Im DIN EN 1992-1-1 /1/ werden zur Ermittlung der erforderlichen Verankerungslänge neben der Verbundfestigkeit die Qualität des Verbundes unter Berücksichtigung der Lage der Bewehrung im Bauteil, des Stabdurchmesser, der Art der Verankerung und der Umschnürung des Stabes erfasst.

2.3 Übergreifungsstöße

Die Mechanismen zur Übertragung der Verbundkräfte in Übergreifungsstößen sind prinzipiell dieselben wie bei der Verankerung eines Einzelstabes. Allerdings unterscheidet sich der Tragmechanismus von gestoßenen Bewehrungsstäben von dem Verbundtragmodell eines verankerten Stabes aufgrund der Überlagerung zweier nebeneinanderliegender Stäbe. Dieser Übertragungsmechanismus kann nach /6/ durch die Überlagerung eines globalen Fachwerkmodells mit lokalen Fachwerkmodellen veranschaulicht werden.

Bei der globalen Betrachtung eines Bauteils können zwei gestoßene Stäbe als ein durchlaufender Bewehrungsstab angesehen werden. Der Stoß stellt lediglich eine lokale Störung des Kraftflusses dar. Die im Bereich des Übergreifungsstoßes vorkommenden Rissbreiten sind wegen des doppelten Bewehrungsstahlquerschnittes deutlich geringer als an den Stoßenden bzw. außerhalb des Stoßes. Die Verbundspannungen sind ebenfalls durch die erhöhte Bewehrungsfläche reduziert /6/.

Bei Überschreiten der Betonzugfestigkeit durch die Ringzugspannungen im Stoßbereich entstehen Längsrisse infolge derer eine Kräfteumlagerung stattfindet, die ab einem bestimmten Bereich zum Versagen der Betondeckung führt /4/. Je nach Betondeckung stellen sich unterschiedliche Rissbilder in einem Übergreifungsstoß ein /7/.

Zur Bestimmung der erforderlichen Übergreifungslänge werden in den Regelwerken die gleichen Parameter wie für die Verankerung berücksichtigt. Da sich durch die Kraftübertragung von einem auf den anderen Stab noch zusätzliche Querzugbeanspruchungen einstellen, ergeben sich größere Übergreifungslängen als Verankerungslängen. Es gibt in der Literatur verschiedene Angaben über das erforderliche Verhältnis der Übergreifungslänge zur Verankerungslänge. Nach DIN EN 1992-1-1 /1/ ist eine Vergrößerung um 50 % für die Übergreifung erforderlich. DIN EN 1992-1-1/NA /2/ fordert für Vollstöße eine Verdoppelung für Stabdurchmesser ab 16 mm.

2.4 Einflussparameter auf den Verbund

Betondruckfestigkeit

Die Verbundfestigkeit lässt sich über den Zusammenhang $\tau = f_c^a$ direkt aus der Betondruckfestigkeit ermitteln. Die Angaben in der Literatur über den Exponenten a weichen voneinander ab. Für die anfängliche Verbundsteifigkeit der Verbundspannungs-Schlupfkurve lässt sich der Zusammenhang mit einem kleinen Exponenten abbilden, was einer Proportionalität der Verbundfestigkeit zur Betonzugfestigkeit entspricht. Da sich die Verbundfestigkeiten in den Normen nach der Anfangssteifigkeit des Verbundes richtet, um die Entstehung größerer Risse zu vermeiden, wird in DIN EN 1992-1-1 /1/ als Funktion $\tau = f_c^{2/3}$ und im MC 2010 /8/ $\tau = f_c^{1/2}$ angegeben.

Nach /10/ nimmt die Verbundfestigkeiten bei Rippenstäben mit gröberer Kornzusammensetzung und geringerem Wasseranteil bei konstanter Betondruckfestigkeit deutlich zu.

Verbund- und Übergreifungslänge

Bei Ausziehversuchen wird eine kurze Verbundlänge untersucht, sodass die Verbundspannung über die gesamte Verbundlänge annähernd konstant ist. Der Verbund versagt in diesen Versuchen mit normalfestem Beton in der Regel bevor die Bemessungsstreckgrenze des Bewehrungsstahls erreicht wird. Bei der Bemessung von Verankerungs- bzw. Übergreifungslängen werden dagegen Stahlspannungen bis hin zur Bemessungsstreckgrenze angenommen und zusätzlich Teilsicherheitsbeiwerte angesetzt, so dass sich immer längere Verbundlängen ergeben. Für diese größeren Längen kann nicht mehr von konstanter Verbundspannung ausgegangen werden /11/.

Durchmesser

Die Angaben in der Literatur über den Einfluss des Durchmessers sind widersprüchlich. Während einige Autoren /12/, /13/ und /14/ keinen Einfluss feststellen konnten, gehen andere Autoren /15/, /16/, /9/, /17/, /18/ und /10/ mit abnehmendem Stabdurchmesser von einer zunehmende Verbundspannung aus.

Bei der Beurteilung des Einflusses des Stabdurchmessers auf den Verbund muss berücksichtigt werden, ob die bezogene Rippenfläche, die Betondeckung und die Verbundlänge konstant oder Vielfache des Stabdurchmessers sind. Dickere Stäbe müssen stärker profiliert sein als Dünnere um die gleichen Verbundfestigkeiten zu erreichen.

Bei konstanter bezogener Rippenfläche ist die maximal erreichbare Verbundtragfähigkeit nach Schenkel /19/ unabhängig vom Stabdurchmesser, während die Verbundsteifigkeit mit zunehmendem Stabdurchmesser abnimmt. Nach Viwathanatepa /15/ weisen kleinere Stabdurchmesser tendenziell höhere Anfangssteifigkeiten und kleinere Endverformungen auf. Nach Tepfers /4/ erreichen kleine Stabdurchmesser bei konstanter Übergreifungslänge höhere Stahlspannungen. Bei einem gleichen Verhältnis I₀/\u03c6 ist der Einfluss der Stabdurchmesser nicht mehr sichtbar.

Betondeckung und Stababstand

Die Betondeckung muss im Zusammenhang mit dem Stabdurchmesser betrachtet werden. Je höher die eingeleiteten Stabkräfte sind, desto größer sind die Ringzugspannungen im Beton. Die Betondeckung muss daher mit zunehmendem Stabdurchmesser vergrößert werden, um ein frühes Versagen Verbundwirkung durch Längsrissbildung zu vermeiden.

Ab einem bestimmten Verhältnis c/\u03c6 ist ein Versagen der Betondeckung nicht mehr maßgebend und es tritt ein Wechsel vom Spaltversagen zum Ausziehversagen ein. Das Spaltversagen ist für die Bemessung im Allgemeinen maßgebend.

Schmidt-Thrö /20/ führte Ausziehversuche mit einem Stab, mit zwei Stäben (Achsabstand 5· ϕ und 3,5· ϕ) und mit Schlaufe (Achsabstand 5· ϕ) durch. Da bei den durchgeführten Zweistabversuchen die beiden Bewehrungsstäbe eines Probekörpers nicht das gleiche Verbundverhalten aufwiesen, stellten sich im Versuch Lastumlagerungen zwischen den Stäben ein. Die τ - Δ -Beziehungen der beiden Stäbe wurden getrennt ermittelt und die Kraft wurde an jedem Stab bestimmt. Je enger die Stablage, desto größer waren die Ungleichmäßigkeiten bei der Lasteinleitung. Demnach schwächt die gegenseitige Beeinflussung benachbarter Stäbe das Tragverhalten durch Verbund umso mehr, je geringer der Stababstand ist.

Werden Übergreifungsstöße gleichmäßig über den Querschnitt verteilt und entspricht die Betondeckung dem halben lichten Stoßabstand, so führt eine Vergrößerung des Stoßabstandes nach Eligehausen /9/ zu einem Ansteigen der Stoßtragkraft bis zu einem Grenzwert. Durch eine Verbreiterung des Querschnitts bzw. die Verdoppelung der Breite pro Stoß beobachtete Chinn /21/ eine um 35 % vergrößerte Stoßtragfähigkeit.

Bügelbewehrung

Zusätzlich zur Betondeckung kann der Verbundbereich durch eine Bügelbewehrung umschnürt werden. Werden die Längsrisse infolge Querzugspannungen im Verbundbereich durch eine Querbewehrung aus Bügeln gekreuzt, werden die Querzugkräfte von den Bügeln aufgenommen.

Wenn die Querzugspannungen die Betonzugfestigkeit überschreiten, treten Längsrisse im Verbundbereich auf und die Querzugkräfte werden von den Bügeln aufgenommen.

In /22/ wurde in Versuchen mit großen Verankerungslängen beobachtet, dass die Spaltrissbreite mit zunehmendem Querbewehrungsgrad abnimmt. Es wurde ein linearer Zusammenhang zwischen der Fläche der Querbewehrung und der Verbundfestigkeit festgestellt.

Querdruck

Schmidt-Thrö /20/ untersuchten Ausziehversuche mit Querpressungen zwischen 0 N/mm² und 20 N/mm², wobei die Querpressung in einem konstanten Verhältnis zur Stahllängsspannung anstieg. Das entspricht den Verhältnissen am Endauflager eines Balkens, mit dessen Belastung gleichzeitig die Querpressung am Auflager und die Längszugspannung in der Biegezugbewehrung erhöht werden.

Versuche ohne Querpressung erreichten Verbundfestigkeiten von 4,5 N/mm². Diejenigen mit Querpressung bis zu 12 N/mm². Der Schritt vom Versuch ohne Querpressung zum Versuch mit einem Querpressungsverhältnis von $\sigma_q/\sigma_s = 5/420$ brachte die größte Verbesserung. Bei den Versuchen ohne Querpressung und mit geringer Querpressung entstanden Längsrisse parallel zur Bewehrung. In den Versuchen mit höherer Querpressung entstand an jedem Stab ein Ausbruchkegel und die Längsrisse wurden überdrückt.

Der Übergang vom Bereich des steiferen Verbundverhaltens zu weicherem Verbundverhalten ist mit steigendem Querpressungsverhältnis stärker ausgerundet. Mit steigendem Schlupf nimmt die Wirkung der Querpressung zu /20/. Auch nach Untrauer und Henry /23/ erhöhte ein Querdruck die Verbundspannungen bei Maximallasten stärker als bei niedrigeren Schlupfwerten.

Die Querpressung am Auflager verursacht eine Kerbwirkung durch die Stäbe, die zu einem Abplatzen der seitlichen Betondeckung führen kann /20/.

Robins und Standish /24/ stellten fest, dass bei Rippenstäben die Verbundfestigkeit nur bis zu einem Querdruck von etwa 10 N/mm² zunimmt, danach bleibt sie etwa konstant. Auch nach /17/ nahm das Verhältnis zwischen zusätzlicher Verbundfestigkeit und aufgebrachtem Querdruck mit zunehmendem Querdruck ab.

Der Schlupf bei der maximalen Verbundfestigkeit wurde nach /17/ mit zunehmender Querdruckspannung größer.

Verankerung durch Schlaufen

Durch die Anordnung einer Schlaufe darf die erforderliche Verankerungs- oder Übergreifungslänge nach DIN EN 1992-1-1 /1/ abgemindert werden, wenn eine ausreichende Umschnürung durch Betondeckung vorhanden ist.

Als Längeneinheit zur Ermittlung der Verbundfestigkeit wurde bei Schlaufenversuchen von Schmidt-Thrö /20/ die gedachte gerade Verlängerung des Stabes bis zum Schlaufenscheitel (projizierte Länge) herangezogen. Dies entspricht dem Interesse des Anwenders, der die erforderliche Bauteillänge zur Verankerung einer bestimmten Kraft berechnen muss.

In Versuchen mit Schlaufen wurde ein Wiederanstieg der Verbundspannungen festgestellt, sobald ein deutlicher Schlupf am Schlaufenbeginn registriert wurde. Demnach benötigt eine Schlaufe Schlupf, um aktiviert zu werden. Bei einer Kombination aus gerader Vorlänge und Schlaufe beruht die Verbundwirkung zunächst auf der geraden Vorlänge bis am Beginn der Schlaufenkrümmung genug Schlupf auftritt, um die Wirkung der Schlaufe zu aktivieren /20/.

Nach Leonhardt /25/ werden in einer Verankerung die Kräfte im Bereich einer Schlaufe durch eine Umlenkpressung übertragen, die einer linienförmigen Teilflächenpressung entspricht. Im Bereich der Schlaufe entsteht eine Spaltwirkung, die zu einem vorzeitigen Spaltbruch führen kann. Aufgrund der Spaltwirkung ist nach /25/ bei Biegerollendurchmessern $D < 15 \cdot \phi$ eine Querbewehrung innerhalb der Schlaufen unerlässlich.

Sonstige Einflüsse

Es gibt weitere Einflüsse auf das Verbundverhalten wie beispielsweise die Belastungsart oder –dauer, die bezogene Rippenfläche, den Korrosionsgrad und die Bewehrungslage, die im Rahmen der vorliegenden Untersuchung nicht näher betrachtet wurden.

2.5 Normative Erfassung der Verbundmechanismen

In der europäischen Normung und im Model Code sind Regelungen sowohl für die Verbundfestigkeit als auch für die erforderlichen Verankerungs- und Übergreifungslängen vorgegeben. Im Folgenden werden die Regelungen nach DIN EN 1992-1-1 /1/ und DIN EN 1992-1-1/NA /2/ und Model Code 2010 /8/ vorgestellt. Bis auf die Berücksichtigung des Stabdurchmessers werden dabei die darin enthaltenen Faktoren zur Berücksichtigung der oben beschriebenen Parameter nicht explizit vorgestellt.

2.5.1 DIN EN 1992-1-1 /1/

Nach DIN EN 1992-1-1 /1/ beträgt die Verbundfestigkeit

$$f_{bd} = 2,25 \cdot \eta_1 \cdot \eta_2 \cdot f_{ctd} = 2,25 \cdot \eta_1 \cdot \eta_2 \cdot 0,7 \cdot 0,3 \cdot f_{ck}^{2/3} / 1,5 = 0,315 \cdot \eta_1 \cdot \eta_2 \cdot f_{ck}^{2/3}$$
(2-2)

Mit

 η_1 = Faktor zur Berücksichtigung der Verbundbedingungen

 $\eta_2 = (132 - \phi)/100$ für $\phi > 32$ mm = Faktor zur Berücksichtigung des Stabdurchmessers

Die Verankerungslänge beträgt

$$I_{0} = \alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \cdot \alpha_{4} \cdot \alpha_{5} \cdot \frac{\phi \cdot \sigma_{sd}}{4 \cdot f_{bd}}$$
(2-3)

und die Übergreifungslänge

$$I_{0} = \alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \cdot \alpha_{5} \cdot \alpha_{6} \cdot \frac{\phi \cdot \sigma_{sd}}{4 \cdot f_{bd}}$$
(2-4)

Uber die α -Faktoren werden die Verankerungsart der Stäbe (α_1), die Betondeckung (α_2), die Querbewehrung (α_3), angeschweißte Querbewehrung (α_4), ein vorhandener Querdruck (α_5) und der Anteil der gestoßenen Stäbe (α_6) berücksichtigt.

Der Längsabstand zweier benachbarter Stöße bei einem Stoßanteil von 100 % darf nach DIN EN 1992-1-1 /1/ die 0,3-fache Übergreifungslänge I₀ nicht unterschreiten. Zwei Stöße gelten als längsversetzt, wenn der Längsabstand der Stoßmitten mindestens der 1,3-fachen Übergreifungslänge entspricht.

Durch die Anordnung einer Schlaufe darf die erforderliche Verankerungs- oder Übergreifungslänge nach DIN EN 1992-1-1 /1/ um den Faktor 0,7 abgemindert werden, wenn eine ausreichende Umschnürung durch Betondeckung mit $c_d > 3 \cdot \phi$ vorhanden ist.

Nach DIN EN 1992-1-1 /1/ muss der kleinste Durchmesser, um den ein Stab gebogen wird, so festgelegt sein, dass Biegerisse im Stab und Betonversagen im Bereich der Stabbiegung ausgeschlossen werden. Um eine Schädigung der Bewehrung zu vermeiden, darf der Biegerollendurchmesser für Schlaufen mit einem Stabdurchmesser $\phi \ge 20$ mm nicht kleiner als $D_{min} = 7 \cdot \phi$ sein.

2.5.2 DIN EN 1992-1-1/NA /2/

Der Faktor α_6 für die Übergreifungslänge beträgt nach DIN EN 1992-1-1/NA /2/ für große Stabdurchmesser 2,0 statt 1,5 nach DIN EN 1992-1-1 /1/.

Für Schlaufen mit einem Biegerollendurchmesser *D* von mehr als $15 \cdot \phi$ und einer Betondeckung $c_d > 3 \cdot \phi$ darf nach DIN EN 1992-1-1/NA /2/ die Verankerungslänge um 50 % verringert werden.

2.5.3 Sonderregelungen für große Stabdurchmesser nach /1/ und /2/

Für den Einsatz von Bewehrungsstäben mit großen Stabdurchmessern von $\phi \ge 32$ mm gelten nach DIN EN 1992-1-1 /1/ zusätzliche Regelungen. Im Folgenden werden die Regelungen, die sich auf den Verbund und die Rissbreitenkontrolle beziehen, erläutert.

Bei der Verwendung großer Stabdurchmesser dürfen die Rissbreiten entweder durch Verwendung einer Oberflächenberechnung oder durch direkte Berechnung der Rissbreiten begrenzt werden. Es nehmen sowohl die Spaltkräfte als auch die Dübelwirkung zu. Die Querschnittsfläche der Oberflächenbewehrung darf nicht kleiner als 0,01·A_{ct,ext} orthogonal und 0,02·A_{ct,ext} parallel zu den Stäben mit großen Durchmessern sein. Nach DIN EN 1992-1-1/NA /2/ muss die Oberflächenbewehrung in beiden Richtungen 0,02·A_{ct,ext} betragen.

Die Verbundfestigkeit muss beim Einsatz großer Stabdurchmesser um den Faktor $\eta_1 = 1 - (\phi - 32) / 100$ abgemindert werden. Nach /2/ ist zur Verbundsicherung in Querrichtung eine zusätzliche Bewehrung von $0,1\cdot A_s$ [cm²/m] über die gesamte Balkenlänge erforderlich. Diese muss die Zugbewehrung umschließen und im Balkensteg verankert werden. Die Querstäbe der Oberflächenbewehrung dürfen dafür herangezogen werden. Jeder zweite Längsstab muss nach /2/ von einem Bügelschenkel gehalten werden, der im Bauteilinneren verankert ist. Diese Längsstäbe sind in den Bügelecken anzuordnen.

Stäbe mit großen Stabdurchmessern sind in der Regel mit Ankerkörpern zu verankern. Alternativ dürfen sie als gerade Stäbe mit umschnürenden Bügeln verankert werden. In Verankerungen ohne Querdruck ist zusätzlich zur Querkraftbewehrung Querbewehrung einzulegen. Bei Verankerungen von geraden Stäben darf die zusätzliche Bewehrung parallel zur Zugseite nicht weniger betragen als $0,25 \cdot A_s \cdot n_1$ und orthogonal zur Zugseite nicht weniger als $0,25 \cdot A_s \cdot n_1$ und orthogonal zur Zugseite nicht weniger als $0,25 \cdot A_s \cdot n_2$. Die zusätzliche Querbewehrung ist gleichmäßig im Verankerungsbereich zu verteilen, wobei die Stababstände das 5-fache des Durchmessers der Längsbewehrung nicht übersteigen sollen. Nach /2/ ist zur Verankerung gerader Stäbe ist das Grundmaß I_{b,rqd} mit $\sigma_{sd} = f_{yd}$ erforderlich. Die ersten endenden Stäbe müssen jedoch mindestens um das Maß d über den Nullpunkt der Zugkraftleine hinausgeführt werden. Die Anzahl der in einem Schnitt endenden Stäbe ergibt sich aus der Zugkraftdeckung. Als längsversetzt gelten Stäbe mit einem Abstand $\geq I_{b,rqd}$ mit $\sigma_{sd} = f_{yd}$. In Bauteilen mit h \geq 800 mm darf die Bewehrung nach /2/ gestaffelt werden. Die Anzahl der in einem Schnitt endenden Stäbe ergibt sich aus der mit $\sigma_{sd} = f_{yd}$. In Bauteilen mit h \geq 800 mm darf die Bewehrung nach /2/ gestaffelt werden. Die Anzahl der in einem Schnitt endenden Stäbe ergibt sich aus der Zugkraftdeckung. Als längsversetzt gelten Stabenden mit einem Abstand größer 0,5 $\cdot I_{b,rqd}$ mit $\sigma_{sd} = f_{yd}$. Es dürfen nach /2/ nur innenliegende Stäbe vor dem Auflager enden.

Stäbe mit großen Durchmessern dürfen nur in Querschnitten mit Mindestabmessungen von 1,0 m oder bei einer Stahlspannung bis maximal 80 % des Bemessungswertes der Stahlfestigkeit zulässig. Nach /2/ dürfen Stöße nur mittels mechanischer Verbindungen oder als geschweißte Stöße ausgeführt werden. Übergreifungsstöße sind nur in überwiegend biegebeanspruchten Bauteilen zulässig, wenn maximal 50 % der Stäbe in einem Schnitt gestoßen werden. Stöße gelten als längsversetzt, wenn der Längsabstand der Stoßmitten mindestens 1,5 \cdot I₀ beträgt.

2.5.4 Model Code 2010 /8/

Die Grundverbundspannung nach Model Code 2010 /8/ beträgt

$$f_{\text{bd},0} = \eta_1 \cdot \eta_2 \cdot \eta_3 \cdot \eta_4 \cdot \left(\frac{f_{\text{ck}}}{25}\right)^{0.5} \cdot \frac{1}{\gamma_c}$$
(2-5)

Die Faktoren η_i stehen für die Staboberfläche (η_1), die Lage beim Betonieren (η_2), den Stabdurchmesser (η_3) und die Stahlfestigkeit (η_4). Die Verbundfestigkeit wird für Stäbe mit $\phi > 25$ mm um den Faktor $\eta_3 = (25/\phi)^{0,3}$ abgemindert.

Die Bemessungsverbundspannung beträgt

$$\mathbf{f}_{bd} = (\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3) \cdot \mathbf{f}_{bd,0} - 2 \cdot \mathbf{p}_{tr}$$
(2-6)

Mit

 α_2 = Faktor für die Betondeckung = $(c_{min}/\phi)^{0.5} \cdot (c_s/2 \cdot c_{min})^{0.15}$

 $\alpha_{3} = Faktor \text{ für die Querbewehrung} = k_{d} \cdot (n_{t} \cdot A_{st} / n_{b} \cdot \phi \cdot s_{t} \cdot 50)$

 $p_{tr} = Querdruck$

Der Bemessungswert der Verankerungslänge beträgt

$$I_{b} = \frac{\phi \cdot \sigma_{sd}}{4 \cdot f_{bd}}$$
(2-7)

Und die Übergreifungslänge

$$I_{b} = \alpha_{4} \cdot \frac{\phi \cdot f_{yd}}{4 \cdot f_{bd}}$$
(2-8)

Der Faktor α_4 ist 0,7, wenn die Spannung der Bewehrung im Stoß nicht mehr als 50 % der charakteristischen Stahlfestigkeit beträgt und wenn nicht mehr als 34 % der Stäbe in einem Schnitt gestoßen werden. Andernfalls ist $\alpha_4 = 1,0$.

2.6 Versuchskörper zur Untersuchung des Verbundes

Allgemeines

Zur Untersuchung des Verbundes von Bewehrung im Beton sind verschiedene Versuchsanordnungen denkbar. Neben wissenschaftlichen Betrachtungen zum generellen Verbundverhalten werden häufig Zulassungsversuche an Bewehrungsstäben durchgeführt. Dazu bieten sich einfache Versuchskörper an, die in ihrer Herstellung und Durchführung nur eine geringe Komplexität aufweisen. Bei der Beurteilung von Versuchskörpern zur Ableitung erforderlicher Verankerungs- und Übergreifungslängen sind die oben beschriebenen Einflussparameter zu beachten.

Pull-out Versuch

Der in Deutschland gängigste Verbundversuch ist der Pull-Out Test nach den Rilem Recommendation RC6 /26/. Der Versuchskörper ist ein Betonwürfel mit Kantenlängen von $10 \cdot \phi$. Der untersuchte Bewehrungsstab hat eine Verbundlänge von $5 \cdot \phi$ und eine verbundfreie Vorlänge von $5 \cdot \phi$. Zur Umschnürung des Verbundbereiches dient die Betondeckung von $4,5 \cdot \phi$; eine Umschnürungsbewehrung wird nicht angeordnet.

Der Pull-out Versuch ist sehr einfach herstell- und durchführbar, allerdings entstehen in diesem Versuch unrealistisch große Verbundfestigkeiten, die in realen Bauteilen selten erreicht werden /28/ Die Betondeckung ist mit 4,5·¢ sehr groß und die flächige Auflagerung des Versuchskörpers erzeugt Reibungskräfte, die der Spaltneigung zusätzlich entgegenwirken. Des Weiteren stellt sich ein Druckbogen zwischen dem Auflager und dem Verbundbereich im Versuchskörper ein, der zu einer Steigerung der Verbundfestigkeit führt /28/.

RILEM Beam Test

Mit dem Beam test nach der RILEM Recommendation RC 5 /27/ kann der Verbund von Bewehrungsstäben im Biegeversuch untersucht werden. Der Beam Test besteht aus zwei Betonkörpern, die mit einem Stahlgelenk in der Betondruckzone verbunden sind. In der Zugzone befindet sich ein durchgehender Bewehrungsstab, der in den beiden Versuchskörpern mit einer Verbundlänge von 10· ϕ verankert ist. Für verschiedene Bewehrungsdurchmesser werden zwei Versuchskörpergrößen vorgegeben. Die Betondeckung beträgt in allen Versuchen 50 mm - ϕ / 2. Es werden Bügel zur Umschnürung des Verbundbereiches und zur Aufnahme der Querkraftbeanspruchung des Balkens angeordnet. Diese Bewehrung wird dem untersuchten Bewehrungsdurchmesser nicht angepasst.

Der Versuch ist in der Herstellung und Durchführung aufwendig. Er erfordert aufgrund seiner Versuchsanordnung viel Querkraftbewehrung, die ein Spaltversagen in der Verbundlänge in der Regel ausschließt /28/. Nach /29/ ist das Momenten-Querkraftverhältnis in diesem Versuchskörper aufgrund der kurzen Spannweite viel kleiner als in realen Bauteilen. Im Auflagerbereich besitzt die Bewehrung keinen Verbund, so dass der Einfluss eines Querdrucks auf die Verankerung unberücksichtigt bleibt. Durch die konstante Betondeckung, die unabhängig vom Stabdurchmesser festgelegt ist, werden die Verbundeigenschaften kleiner Stabdurchmesser überschätzt.

Beam-End Test nach ASTM

Zur Untersuchung des Verbundes von Bewehrung im Verankerungsbereich von Biegebalken wurde der Beam-End Test (Bild 2-2) entwickelt. Er ist in den USA als Standardversuch zum Vergleich der Verbundfestigkeit von Betonstahlbewehrung von der American Society for Testing and Materials (ASTM) unter der Nummer A944-10 /28/ geregelt. In dem Versuch wird ein Bewehrungsstab aus einem Versuchskörper mit einer Biegezug- und Biegedruckzone herausgezogen. Durch die exzentrische Anordnung des untersuchten Bewehrungsstabes entsteht ein Biegemoment.

Bild 2-2: Beam-End Test nach ASTM /28/

Der Versuchskörper hat eine Länge von 610 mm. Die Höhe und Breite des Versuchskörpers hängen von dem untersuchten Bewehrungsdurchmesser ab. Die Betondeckung und die Verbundlänge können variiert werden und sind in der Norm nicht vorgegeben. Die verbundfreie Vorlänge beträgt 130 – 200 mm. In der Norm ist eine Querbewehrung vorgegeben, die ein Schubversagen des Körpers verhindert, den Verbundbereich allerdings nicht umschnürt.

Nach Wildermuth /29/ ist der Beam-End Test nach ASTM /30/ besser geeignet als der Pull-Out Versuch /26/ und der Biegeversuch /27/ nach RILEM, um das Verbundverhalten in einem Biegebauteil zu beschreiben. Der Beam-End Versuch ist vergleichbar mit dem Endauflager eines Biegebalkens, dessen Lastabtrag in Bild 2-3 veranschaulicht wird.

Weitere Verbundversuchskörper

Im Laufe der letzten Jahrzehnte wurden zahlreiche Verbunduntersuchungen durchgeführt und einige neue Versuchsanordnungen entwickelt. Janovic /31/ nutzte beispielsweise einen Versuchskörper, der die Querdruckspannungen im herkömmlichen Pull-out Versuch vermeiden soll. Es liegt auch ein Versuchsbericht /32/ über Pull-out Versuche aus Stützen vor, in denen ein Bewehrungsstab quer aus einem Bauteil mit Normalkraftbeanspruchung gezogen wird.

2.7 Versuchsanordnung für Übergreifungen

Übergreifungsstöße werden entweder mithilfe von Biegeversuchen oder zentrischen Zugversuchen untersucht. Der Biegeversuch besteht in der Regel aus einem Vierpunkt-Biegeträger mit einem Übergreifungsstoß im Bereich mit konstanter Momentenbeanspruchung. Eine etwas einfachere Versuchsanordnung ist der zentrische Zugversuch, der den Biegezugbereich eines Trägers abbildet. Der im Biegebauteil vorhandene Effekt des Aufklappens der Bewehrung aus der Betondeckung während des Spaltversagens kann durch den zentrischen Zugversuch nicht erfasst werden.

3 Experimentelle Untersuchungen

3.1 Allgemeines

Das Verbundtragverhalten von Bewehrungsstäben mit großen Stabdurchmessern wurde anhand von 33 Beam-End Versuchen und acht Übergreifungsstößen in Vierpunkt-Biegeversuchen untersucht. Während der Beam-End Versuche wurden Verbundspannungs-Schlupfkurven ermittelt und die Rissbildung auf der Oberfläche der Versuchskörper beobachtet. In den Biegeversuchen wurden Übergreifungen von drei nebeneinanderliegenden Bewehrungsstäben (Vollstöße) getestet. Während der Versuche wurden die maximalen Traglasten der Übergreifungen mit großen Stabdurchmessern ermittelt, sowie umfangreiche Rissbreiten- und Verformungsmessungen durchgeführt.

3.2 Untersuchungsparameter

Beam-End Test

Bei den Beam-End Tests wurde der Einfluss des Stabdurchmessers, der Betondruckfestigkeit, der Betondeckung, der Querbewehrung, Querpressung und des Stababstandes der Bewehrungsstäbe untersucht (Bild 3-1).

Die 13 Versuchsserien der Beam-End Versuche umfassten je zwei Versuche (Tabelle 3-1). Die Serie mit BEV1 mit einer Betondruckfestigkeit von etwa 30 N/mm², einem Stabdurchmesser von 40 mm, einer Betondeckung von 60 mm und einer Verbundlänge von 200 mm diente als Referenzwert der Untersuchung.

In den Versuchsserien BEV-2 bis BEV-3 kamen höhere Betonfestigkeiten f_{cm} zum Einsatz. In den Versuchen BEV-4 bis BEV-6 wurden unterschiedliche Stabdurchmesser ϕ getestet. Im Versuch BEV-7 wurde die Betondeckung c von $1,5 \cdot \phi$ auf $1,0 \cdot \phi$ abgemindert. Mit dem Versuch BEV-8 wurde der Einfluss einer um 50 % verringerten Querbewehrung untersucht. Im Versuch BEV-9 wurde ein Querdruck aufgebracht, um den Einfluss der Querpressung auf den Verbund zu untersuchen. Bei den Versuchen BEV-10 und BEV-11 wurden zwei Stäbe nebeneinander angeordnet. Dabei wurde eine enge (lichter Abstand $2 \cdot \phi$) und eine weite Stablage (lichter Abstand $4 \cdot \phi$) getestet. Der Versuch BEV-12 wurde mit einer Schlaufe durchgeführt. Da die Vierpunkt-Biegeversuche mit Bewehrungsstäben zweier Walzwerke durchgeführt wurden, diente die Versuchsserie BEV-13 als Vergleich für die Verbundfestigkeit der Stäbe aus dem zweiten Walzwerk. Eine Übersicht der Beam-End Versuche enthält Tabelle 3-1.

Versuch	Anzahl	φ	<i>f</i> _{cm}	A _{st}	$A_{\rm st}/A_{\rm s}$	С	Stabanzahl
BEV-1	4	40 mm	30	φ 14/14	1,0	1,5·¢	1
BEV-2	2	40 mm	55	φ 16/15	1,0	1,5·¢	1
BEV-3	2	40 mm	100	φ 16/12	1,0	1,5·¢	1
BEV-4	4	10 mm	30	φ 6/4	1,0	1,5·¢	1
BEV-5	3	20 mm	30	φ 8/90	1,0	1,5·¢	1
BEV-6	2	50 mm	30	φ 16/13	1,0	1,5·¢	1
BEV-7	2	40 mm	30	φ 14/14	1,0	1,0·φ	1
BEV-8	2	40 mm	30	φ 10/14	0,5	1,5·¢	1
BEV-9*	2	40 mm	30	φ 14/14	1,0	1,5·¢	1
BEV-10	4	40 mm	30	φ 14/14	1,0	1,5·¢	2
BEV-11	2	40 mm	30	φ 14/14	1,0	1,5·¢	2
BEV-12	2	40 mm	30	φ 1 4/14	1,0	1,5·¢	2 (Schlaufe)
BEV-13**	2	40 mm	30	φ 14/14	1,0	1,5· φ	1

Tabelle 3-1: Versuchsparameter der Beam-End-Versuche

* mit Querdruck

**Bewehrungsstahl von den Badischen Stahlwerken (alle übrigen Stäbe von Stahlwerk Annahütte)

Vierpunkt-Biegeversuche

Bei den acht Vierpunkt-Biegeversuchen wurde jeweils ein Versuchsparameter variiert. Der Versuch T1 wurde mit einer Betondeckung c = $1,5 \cdot \phi = 60$ mm und einem Stoßfaktor $\alpha_6 = 1,5$ ausgeführt. Die Stoßlänge ergab sich zu $I_0 = 1310$ mm. Für den Versuch T2 wurde die Betondeckung auf c = $1,0 \cdot \phi = 40$ mm verringert (Bild 3-2). Im Versuch T3 wurde der Einfluss der Übergreifungslänge untersucht; die Übergreifungslänge des Trägers T3 wurde mit einem Stoßfaktor von $\alpha_6 = 2,0$ nach DIN EN 1992-1-1/NA /2/ auf $I_0 = 1750$ mm vergrößert.

Bild 3-2: Prinzipskizze des Versuchs T2

Während bei den Versuchen T1 bis T3 und T5 bis T8 eine Zylinderdruckfestigkeit von etwa 30 N/mm² angestrebt wurde, betrug die Zylinderdruckfestigkeit des Versuchskörpers T4 60 N/mm². Die anderen Parameter c = 1,0 · ϕ = 60 mm und α_6 = 1,5 wurden aus dem Versuch T2 übernommen. In den Versuchen betrug der lichte Abstand der Stöße in der Regel 2,0 · ϕ , lediglich im Versuch T5 wurde der Abstand auf 4,0 · ϕ vergrößert (Bild 3-4).

Mit den Versuchen T6 und T7 wurde der Einfluss einer verstärkten Querbewehrung untersucht. Im Versuch T6 wurde der Bügelbewehrungsabstand im Stoßbereich halbiert, wodurch sich ein doppelt so großes Querbewehrungsverhältnis A_{st}/A_s einstellte. Im Versuch T7 wurde das in Übergreifungen übliche Querbewehrungsverhältnis $\Sigma A_{st}/A_s = 1,0$ beibehalten, allerdings wurde über die gesamte Stablänge eine Oberflächenbewehrung nach DIN EN 1992-1-1 /1/ bestehend aus ϕ 10 mm im Abstand von 10 cm angeordnet. Im Versuch T8 wurde der Einfluss eines vergrößerten Stabdurchmessers von 50 mm untersucht. Dabei wurden die Werte c = 1,5 · ϕ = 75 mm und α_6 = 2,0 beibehalten. Eine Übersicht über das Versuchsprogramm enthält Tabelle 3-2.

Versuch	f _{cm}	Querschnitt (b/h)	Beweh- rungs-ø	Querbeweh- rung A _{st} /A _s	Beton- deckung	Stoßfaktor α_6	Stoßlänge	Stoßlänge
[-]	[-]	[mm]	[mm]	[-]	[-]	[-]	[-]	[m]
T 1	30	520/600	40	1,0	1,5·¢	1,5	33•ф	1,31
T 2	30	500/600	40	1,0	1,0·¢	1,5	33•ф	1,31
Т 3	30	520/600	40	1,0	1,5·¢	2,0	44·φ	1,75
T 4	60	500/350	40	1,0	1,0·¢	1,5	23•ф	0,93
T 5	30	500/660	40	1,0	1,0·¢	1,5	33•ф	1,31
Т 6	30	520/600	40	2,0	1,5·¢	2,0	44·φ	1,75
Τ7	30	540/600	40	1,0*	1,5·¢	2,0	44·φ	1,75
Т 8	30	650/600	50	1,0	1,5·¢	2,0	42·¢	2,07

 Tabelle 3-2:
 Versuchsprogramm Vierpunkt Biegeversuche

3.3 Baustoffe

3.3.1 Beton

Für den überwiegenden Teil der Versuche wurde eine Zylinderdruckfestigkeit von 30 N/mm² angestrebt. In den Beam-End Versuchen wurden zusätzlich mittlere Zylinderdruckfestigkeiten von 55 N/mm² (BEV-2) und 104 N/mm² (BEV-3) getestet. In den Vierpunkt-Biegeversuchen wurde der Versuch T4 mit einer Zylinderdruckfestigkeit von 60 N/mm² durchgeführt.

Der Beton für die Vierpunkt-Biegeversuche und einige Beam-End Versuche wurde in einem ortsansässigen Transportbetonwerk bestellt. Für einzelne Beam-End Versuche wurde der Beton in der Versuchshalle des Instituts für Massivbau der RWTH Aachen hergestellt. In beiden Fällen wurde die gleiche Betonrezeptur verwendet (Tabelle 3-3). Um die Aushärtezeit zu verkürzen, kam ein schnell erhärtender Zement mit hoher Festigkeitsklasse CEM I 52,5 R zum Einsatz. Der Beton wurde einem Flaschenrüttler verdichtet und danach mit Folien abgedeckt, um eine frühzeitige Austrockung zu vermeiden. Nach einer Erhärtungsphase von etwa einem Tag wurden die Körper ausgeschalt und bis zur Durchführung des Versuches in der Versuchshalle gelagert. Der w/z-Wert des Betons betrug 0,63 und das Ausbreitmaß im Mittel 49 cm. Die am Versuchstag ermittelten Baustoffkennwerte aus je sechs Zylinderproben und drei Würfeln enthält Tabelle 3-4.

Tabelle 3-3:	Betonrezeptur
--------------	---------------

Zement	Wasser	Fließmittel	Zuschlag gesamt	Körnung 0 – 2	Körnung 2 – 8	Körnung 8 – 16
[kg/m³]	[kg/m³]	[kg/m³]	[kg/m³]	[kg/m³]	[kg/m³]	[kg/m³]
285	180	1,0	1869	748	467	654

Versuch	Zylinderdruck- festigkeit f _{cm}	Würfeldruck- festigkeit f _{cm,cube}	Spaltzug- festigkeit f _{ct,spalt}	Güte f _{cm,28d}	Elastizitätsmodul E _{cm}
BEV-1 (1+2)	29,4	36,5 / 9 d	2,5	41,6	24829
BEV-1 (3+4)	26,4	29,3 / 10 d	2,7	39,6	21675
BEV-2	55,4	70,3 / 6 d	3,7	71,9	30525
BEV-3	104,0	116,4 / 7 d	-	139,3	37388
BEV-4 (1+2)	28,6	34,0 / 6 d	2,5	42,4	23543
BEV-4 (3+4)	32,5	39,6 / 8 d	3,1	41,4	25008
BEV-5 (1+2)	29,7	35,7 / 7 d	2,8	42,4	24383
BEV-5 (3)	32,5	36,5 / 7 d	3,1	41,4	25008
BEV-6	29,9	35,9 / 8 d	2,9	42,4	24539
BEV-7	32,0	37,3 / 9 d	2,7	41,8	24663
BEV-8	34,3	40,8 / 16 d	2,7	42,2	24936
BEV-9	38,2	43,0 / 10 d	3,2	48,2	25296
BEV-10 (1+2)	33,5	36,4 / 8 d	3,1	43,7	24052
BEV-10 (3+4)	36,9	41,8 / 9 d	2,9	48,8	25792
BEV-11	37,3	42,9 / 10 d	2,8	48,8	24378
BEV-12	29,5	34,7 / 7 d	2,8	44,0	24540
BEV-13	30,5	35,4 / 6 d	2,7	44,0	20912
T1	40,2	44,4 / 15 d	2,8	48,2	27041
T2	32,5	39,6 / 8 d	3,1	41,4	25008
Т3	33,0	41,5 / 6 d	2,8	45,3	25328
T4	54,8	74,9 / 26 d	3,8	78,3	28890
Т5	34,6	40,4 / 13 d	2,7	47,9	25819
Т6	39,2	46,0 / 12 d	-	48,8	25718
T7	34,5	43,6 / 9 d	3,1	49,7	24377
Т8	36,8	43,6 / 10 d	3,2	50,4	25850

 Tabelle 3-4:
 Ergebnisse der Baustoffproben

Die Bewehrung, deren Verbundverhalten untersucht wurde, lag während der Betonage unten (gute Verbundbedingungen). Vor dem Einbau in die Prüfmaschine wurden die Versuchskörper gedreht, um die Übergreifungslänge im Versuchsstand besser beobachten zu können.

Zur Unterbrechung des Verbundes der Bewehrungsstäbe außerhalb der Verbundzone in den Beam-End Versuchen wurden Kunststoffhüllrohre auf die Stäbe geschoben. Mithilfe einer Dichtmasse wurde verhindert, dass Beton in die Hüllrohre eindringen konnte. Zur Herstellung guter Verbundbedingungen wurden die Bewehrungskörbe der Beam-End Versuche und der Träger mit unten liegender Biegezugbewehrung hergestellt (Bild 3-3). Da während der Versuchsdurchführung die Zugkräfte auf der Oberseite des Trägers auftraten, wruden Schlaufen angebracht, damit der Versuchskörper vor dem Einbau in den Versuchsstand umgedreht werden konnte.

Bild 3-3: Ansicht des Bewehrungskorbs bei geöffneter Schalung von Versuchskörper BEV8-1 (links), Betonage des Trägers T2 (rechts)

3.3.2 Bewehrungsstahl

Es wurden insgesamt fünf verschiedene Stahlbetonstäbe B500B nach DIN 488 /33/ untersucht. Die bezogene Rippenfläche wurde für die Stäbe mit den Durchmessern 40 mm und 50 mm am Institut für Bauforschung der RWTH (ibac) und bei den Badischen Stahlwerken ermittelt (Tabelle 3-5).

Hersteller	Messung	Durchmesser ø	f _R
-	-	10 mm	0,052
Hennigsdorfer Elektro- stahlwerke	-	20 mm	0,056
Stahlwerk Annahütte	RWTH	40 mm	0,064
Stahlwerk Annahütte	RWTH	50 mm	0,067
Badische Stahlwerke	BSW	40 mm	0,079

Tabelle 3-5: bezogene Rippenflächen der verwendeten Betonstähle

Zur Ermittlung der Materialeigenschaften der verwendeten Betonstahlbewehrung wurden zerstörende Zugversuche durchgeführt. Tabelle 3-6 enthält eine Zusammenstellung der Mittelwerte der ermittelten Baustoffkennwerte aus je drei Versuchen.

Durchmesser <i>ø</i>	Querschnitts- fläche	Streckgrenze	Zugfestigkeit	Zugfestigkeit/ Streckgrenze	Elastizitäts- modul
[mm]	[mm²]	[N/mm²]	[N/mm²]	[-]	[N/mm ²]
10	80	535	637	1,19	206446
20	314	570	661	1,16	195267
40	1257	572	690	1,21	201170
50	1964	540	627	1,16	196430
40 (BSW)	1257	583	694	1,19	-

Tabelle 3-6: Kennwerte der Betonstahlbewehrung

3.4 Beam-End Versuche

Dimensionierung der Beam-End Versuche

Für die hier beschriebenen Versuche wurde ein modifizierter Beam-End Versuch nach ASTM /30/ gewählt. Bild 2-2 zeigt den Versuchskörper mit der Anordnung der Bewehrung und allen Abmessungen nach ASTM /30/. Der Versuch wurde modifiziert, indem alle Abmessungen in Abhängigkeit des Durchmessers der untersuchten Bewehrung gewählt wurden. Zum direkten Vergleich der Versuchsreihen untereinander wurde der Winkel der Druckstreben nach der Fachwerkanalogie (Bild 3-1) als konstante Größe gewählt. Die Höhe wurde zu h = $14 \cdot \phi$, die Länge zu l = $20 \cdot \phi$ und die Breite zu b = $8 \cdot \phi$ gewählt.

Die Verbundlänge betrug in Anlehnung an Versuche aus der Literatur 5· ϕ . Diese Verbundlänge ist kurz genug, um eine konstante Verbundspannungsverteilung über die Verbundlänge anzunehmen, und lang genug, um einen großen Einfluss der Verbundstreuung auszuschließen. Zur Vermeidung eines kegelförmigen Betonausbruchs wurde die verbundfreie Vorlänge nach einer Empfehlung von Wildermuth /29/ zu 5· ϕ gewählt.

Neben der Längsbewehrung ist im Beam-End Versuch nach ASTM /30/ eine Rückhängebewehrung A_{längs} bis unter die Traverse erforderlich, mit der die eingeleitete Zugkraft unterhalb des Auflagers verankert wird. Diese Ausführung nach ASTM /30/ wurde übernommen. Der Versuch wurde gegenüber ASTM /30/ hinsichtlich der Querbewehrung A_{st} modifiziert, indem eine Bügelbewehrung im Bereich der Verbundlänge angeordnet wurde.

Die Querbewehrungsmenge entsprach aus Vergleichsgründen der Querbewehrung in einem Übergreifungsstoß, bei dessen Bemessung das Bewehrungsverhältnis $\Sigma A_{st} = A_s$ gilt. Hierbei ist ΣA_{st} der Querschnitt aller Bügel und A_s der Querschnitt eines gestoßenen Stabes. Der Längsabstand der Bügelbewehrung wurde ebenfalls in Anlehnung an Übergreifungsstöße gewählt. Bei der Versuchsserie BEV-8 mit reduzierter Querbewehrung (vgl. Tabelle) wurden außerhalb des Verbundbereiches zusätzliche Bügel eingebaut, um die Querkrafttragfähigkeit des Versuchskörpers weiterhin sicherzustellen.

In den Versuchen BEV-10 und BEV-11 wurden zwei nebeneinanderliegende Bewehrungsstäbe aus dem Beton herausgezogen. Diese Versuchskörper hatten eine Breite von $b = 12 \cdot \phi$ bzw. $b = 14 \cdot \phi$ um unter Beibehaltung der Betondeckung der Einstabversuche einen Stababstand von $2 \cdot \phi$ bzw. $4 \cdot \phi$ realisieren zu können.

Im Versuch BEV-13 wurde eine Schlaufe aus dem Versuchskörper herausgezogen. Dieser Versuch entsprach mit dem Stababstand $4 \cdot \phi$ und der Breite $14 \cdot \phi$ dem Versuch BEV-11.

Versuchsaufbau Beam-End Versuche

Durch die exzentrische horizontale Belastung des Versuchskörpers ist neben dem horizontalen Auflager eine vertikale Halterung notwendig, um das Versatzmoment aus der Exzentrizität aufzunehmen. Zur Lasteinleitung wurde das Widerlager eines Spannbetts genutzt. Der Versuchskörper liegt darin flächig auf dem Boden auf. An der Vorderseite des Versuchskörpers greift zum einen die Pull-Out-Kraft an und wirkt zum anderen die horizontale Auflagerkraft. Die Aufnahme der vertikalen Lagerreaktion erfolgt über eine Traverse im hinteren Bereich des Versuchskörpers, die über Gewindestäbe mit dem Hallenboden verankert ist (Bild 3-4). Die Breiten der Auflagerplatten unter der Traverse und der vorderen Druckplatte wurden in Abhängigkeit des untersuchten Stabdurchmessers gewählt.

Messtechnik Beam-End Versuche

Während der Beam-End Versuche wurde die Kraft der Prüfmaschine kontinuierlich aufgezeichnet. Die Verschiebung des Bewehrungsstabes gegenüber dem Betonkörper wurde mit je einem induktiven Wegaufnehmer (WA) am belasteten und unbelasteten Stabende gemessen.

Die Rissentwicklung des Betons im Verbundbereich wurde mit Wegaufnehmern aufgezeichnet (Bild 3-5). Ein Wegaufnehmer wurde am Ende der Verbundlänge parallel zur Längsachse angeordnet, da sich am Ende der Verbundlänge stets ein Querriss einstellte. Ein oder zwei weitere Wegaufnehmer quer zur gezogenen Bewehrung zeichneten die Rissbreiten der Längsrisse im Verbundbereich auf. In einigen Versuchen wurde die Rissentwicklung zusätzlich mit einer Videokamera aufgezeichnet. In den Versuchen mit zwei Bewehrungsstäben (BEV-10, BEV-11 und BEV-12) wurde die Stahldehnung beider Stäbe kontinuierlich mit Wegaufnehmern aufgezeichnet.

Im Versuch BEV-12 mit Schlaufe konnte der Schlupf am unbelasteten Stabende nicht gemessen werden. Daher wurden Schlupfmessungen am Schlaufenscheitel und am Übergang vom geraden Verbundbereich zur Schlaufe durchgeführt. Dazu wurden Stahlstäbe an die Bewehrung angeschweißt, die durch Kunststoffhüllrohre an die Betonoberfläche geführt wurden und während des Versuches mit Wegaufnehmern versehen wurden.

In den Versuchen BEV-8 bis BEV-12 wurden Dehnungsmessstreifen (DMS) auf den Bügeln angeordnet, um die Stahldehnung der Querbewehrung in Abhängigkeit des Schlupfes zu ermitteln.

Bild 3-5: Ansicht der Messtechnik der Beam-End Versuche (links), Messtechnik auf der Oberseite parallel im Versuch BEV-8-2 (rechts)

Versuchsdurchführung der Beam-End Versuche

Während der Beam-End Versuche wurden die Bewehrungsstäbe über eine Traverse mit zwei 1600 kN Lukas Hydraulikzylindern LSC 160/200 PN kraftgesteuert aus dem Beton herausgezogen. Die Regelung der Belastung erfolgte manuell. Die Bewehrungsstäbe wurden bis zu einem Schlupf von 10 mm gegenüber dem Beton belastet.

Für die Versuchsserien BEV-4 und BEV-5 mit den Durchmessern 10 mm und 20 mm war der Einbau in den beschriebenen Versuchsstand aufgrund der deutlich kleineren äußeren Abmessungen nicht möglich. Für diese Versuche wurde ein statisch äquivalenter Versuchstand mit einem Lukas Hydraulikzylinder mit einer maximalen Prüfkraft von 100 kN verwendet.

In den Versuchsserien BEV-11 und BEV-12 wurden zwei Stäbe nebeneinander mit zwei Lukas Hydraulikzylindern mit einer maximalen Prüfkraft von 560 kN gleichmäßig aus dem Versuchskörper herausgezogen. Da in der Versuchsserie BEV-10 der Stababstand der beiden Stäbe mit 8 cm sehr klein war, war es nicht möglich zwei Zylinder nebeneinander anzuordnen. Die Bewehrungsstäbe in dieser Versuchsserie wurden wie die Einstabversuche mit Hilfe eine Traverse und zwei 1600 kN Hydraulikzylindern aus dem Beton herausgezogen. Zum Ausgleich der dadurch entstehenden ungleichmäßigen Lasteinleitung wurden Unterlegscheiben, Futterbleche und Gewindeschrauben verwendet. Auch hier war wie in /20/ beobachtet eine gleichmäßige Belastung beider Stäbe nicht möglich.

In RILEM /26/ ist für die Pull-out Versuche eine Geschwindigkeit von $0.5 \cdot \phi^2$ [N/sec] vorgegeben. Das entspricht für die 40 mm Bewehrungsstäbe einer Belastungsgeschwindigkeit von 48 kN/min bzw. 38 N/mm²/min. Die Beam Tests nach RILEM /26/ werden mit 160 N/mm²/min belastet. Auch von Wildermuth /29/ wurden die Versuchskörper mit 160 N/mm²/min belastet. Nach ASTM /30/ sollen pro Minute 10 bis 33 % der maximalen Verbundfestigkeit aufgebracht werden. Bei einer Verbundfestigkeit von 10 N/mm² und einer maximalen Längsspannung von 200 N/mm² (für I_b = 5· ϕ) ergeben sich 20 bis 66 N/mm²/min. In den hier beschriebenen Beam-End Versuchen wurde die Belastungsgeschwindigkeit so gewählt, dass für alle Stabdurchmesser eine konstante Spannungszunahme von $\Delta \sigma \approx 40$ N/mm²/min vorhanden war. Diese Prüfgeschwindigkeit entspricht in etwa den Vorgaben für die Versuchskörper nach RILEM /26/ und nach ASTM /30/. Für den Stabdurchmesser ϕ = 40 mm ergab sich hieraus eine Belastungsgeschwindigkeit von 50 kN/min. Die Versuchsdauer betrug etwa fünf Minuten. Eine Übersicht über die Belastungsgeschwindigkeiten enthält Tabelle 3-7.

Stabanzahl n	Stabdurch- messer ø	Verbundspannung/ Minute	Längsspannung/ Minute	Längsspannung pro Sekunde	Kraft/Minute
[-]	[mm]	[N/mm²/min]	[N/mm²/min]	[N/mm²/sec]	[kN/min]
1	10	≈ 2	40	0,67	3
1	20	≈ 2	40	0,67	13
1	40	≈ 2	40	0,67	50
1	50	≈ 2	40	0,67	79
2	40	≈ 2	40	0,67	100

Tabelle 3-7: Belastungsgeschwindigkeit Beam-End Versuche

3.5 Vierpunkt-Biegeversuche

Dimensionierung der Vierpunkt-Biegeversuche

Die Biegeversuche wurden so dimensioniert, dass drei Bewehrungsvollstöße mit einem Stabdurchmesser von 40 mm im Versuchskörper angeordnet werden konnten. Der Abstand der Auflager zum Übergreifungsstoß sollte mindestens der zweifachen statischen Nutzhöhe d entsprechen (Bild 3-2).

In Bild 3-6 sind die beispielhaften Querschnitte der Träger T3 mit einer Betondeckung c = $1,5 \cdot \phi$ und einem Bewehrungsabstand a = $2 \cdot \phi$, T5 mit c = $1,0 \cdot \phi$ und a = $4 \cdot \phi$, sowie T7 mit Oberflächenbewehrung dargestellt.

Die Breite b des Versuchskörpers ergab sich aus dem Durchmesser der Bewehrung, der variierten Betondeckung und dem Stababstand. Die Höhe h des Balkens wurde so gewählt, dass die Streckgrenze der Biegezugbewehrung erreicht werden konnte, bevor die Biegedruckzone versagte.

Bild 3-6: Querschnitte der Träger T3, T5 und T7 während der Betonage

Die Übergreifungslänge wurde mithilfe einer mittleren Verbundfestigkeit nach DIN EN 1992-1-1 /1/ bestimmt.

$$I_{0} = \alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \cdot \alpha_{5} \cdot \alpha_{6} \cdot \frac{\phi \cdot \sigma_{s}}{4 \cdot f_{bd}} = \alpha_{6} \cdot \frac{\phi \cdot \sigma_{s}}{4 \cdot f_{bd}}$$
(3-1)

$$f_{bd} = 2,25 \cdot \eta_1 \cdot \eta_2 \cdot f_{ctm} = 2,25 \cdot f_{ctm}$$
(3-2)

Dabei wurde die mittlere Betonzugfestigkeit f_{ctm} und die experimentell ermittelte Streckgrenze der Bewehrung von 570 N/mm² (T8: 540 N/mm²)angesetzt. Die Faktoren für die Verbundqualität η_1 , den Stabdurchmesser η_2 , die Stabform α_1 , die Betondeckung α_2 , die Querbewehrung α_3 und den Querdruck α_5 wurden dabei zu 1,0 gesetzt. Eine Übersicht über die Abmessungen der Biegeversuche enthält Tabelle 3-8.

Ver- such	Stabdurch- messer ø	f _{cm}	Breite b	Höhe h	α ₆	Übergrei- fungslänge l₀	Ι ₀ / φ	Beton- deckung c	A _{st} /A _s
[-]	[mm]	[N/mm ²]	[cm]	[cm]	[-]	[cm]	[-]	[mm]	[-]
T1	40	40,2	52	60	1,5	131	33	60	1,0
T2	40	32,5	50	60	1,5	131	33	60	1,0
Т3	40	33,0	52	60	2,0	175	44	60	1,0
T4	40	54,8	50	35	1,5	93	23	60	1,0
T5	40	34,6	66	45	1,5	131	33	60	1,0
T6	40	39,2	52	60	2,0	175	44	60	1,7
T7	40	34,5	52	60	2,0	175	44	60	1,7
T8	50	36,8	65	60	2,0	207	42	75	1,0

 Tabelle 3-8:
 Versuchsparameter Vierpunkt-Biegeversuche

In den Versuchen T1 bis T5 und T7 bestand die Querbewehrung aus vier Bügeln mit einem Durchmesser von 14 mm und einem Abstand von 13 cm (T1, T2, T5: $\alpha_6 = 1.5 / f_{cm} \approx 30 \text{ N/mm}^2$), 18 cm (T3, T7: $\alpha_6 = 2.0 / f_{cm} \approx 30 \text{ N/mm}^2$) bzw. 9 cm (T4: $\alpha_6 = 1.5 / f_{cm} = 55 \text{ N/mm}^2$). Im Versuch T6 wurde der Querbewehrungsgrad verdoppelt, indem der Bügelabstand unter Beibehaltung des Bügeldurchmessers halbiert wurde. Im Versuch

T7 wurde eine Oberflächenbewehrung nach Bild 3-7 angeordnet. Nach DIN EN 1992-1-1/NA /2/ ergab sich mit 2 % \cdot A_{ct.ext} ein Bewehrungsnetz von ϕ 10 alle 10 cm in Quer- und Längsrichtung.

Versuchsaufbau Vierpunkt-Biegeversuche

Die Träger wurden in der Versuchshalle des Institutes für Massivbau der RWTH Aachen mit zwei Instron Schenck Testing Hydropulszylindern mit einer maximalen Kraft von 630 kN in einem Abstand von 7,0 m belastet und im Abstand von 3,50 m aufgelagert. Diese Länge war erforderlich um die Biegezugbewehrung im konstanten Momentenbereich zwischen den Auflagern bis zu ihrer tatsächlichen Streckgrenze zu belasten. Die Lasteinleitung erfolgte im Abstand von 30 cm von den Trägerenden (Bild 3-2).

Messtechnik Vierpunkt-Biegeversuche

Zur Beurteilung des Trag- und Verformungsverhaltens der Träger während der Belastung insbesondere im Stoßbereich wurden folgende Messwerte erfasst:

- Kraft der Prüfzylinder
- Durchbiegung des Trägers durch induktive Wegaufnehmer (WA) unterhalb des Trägers unter den Prüfzylindern und in der Trägermitte
- Stahldehnungen mit Dehnungsmessstreifen (DMS) auf der Biegezugbewehrung im Stoßbereich
- Dehnung der Bügelbewehrung mit DMS
- Betonlängsstauchung durch DMS und WA auf der Betonoberfläche im Stoßbereich, am Auflager sowie zwischen Auflager und Stoßbereich
- Querdehnung durch Setzdehnungsmessungen (SDM) mit einer Messbasis von 100 mm in der Randfaser und auf der Seite der Träger
- Schlupfmessung am Ende des Übergreifungsstoßes (Bild 3-9)
- Verdrehung des Trägers durch induktive Wegaufnehmer an der Stirnseite des Trägers
- Rissbreiten mit einer Risslupe bei den Bewehrungsspannungen 160 N/mm², 320 N/mm² und 400 N/mm²
- Abstände zwischen den Rissen

Bild 3-8 stellt die Anordnung der Messtechnik beispielhaft für den Versuch T1 dar.

Bild 3-8: Anordnung der Messtechnik am Träger T1

Zum Vergleich des Schlupfes im Übergreifungsbereich der Vierpunkt-Biegeversuche mit den Beam-End Versuchen wurde der Schlupf am Stoßende gemessen. Dazu wurden zwei mit einem Plastikröhrchen ummantelte Stahlstifte an die Stoßenden der Längsbewehrung geschweißt (Bild 3-9). Diese Stahlstifte waren so

lang, dass sie nach der Betonage aus der Betonoberfläche herausstanden. Mit zwei Wegaufnehmern auf der Betonoberfläche wurden die Relativverschiebungen gegen die Stahlstifte und somit der Schlupf an den Stoßenden gemessen (Bild 3-9).

Die Rissentwicklung wurde durch die Dokumentation des Rissbildes, durch Rissbreitenmessungen und Messungen der Rissabstände festgehalten. Die Rissmessungen wurden in den Laststufen 160 N/mm², 320 N/mm² und 400 N/mm² innerhalb von ca. 60 Minuten durchgeführt.

Die Rissbreitenänderungen wurden mit einer Risslupe *Wide Stand Micro* des Herstellers *Peak* in ausgewählten Laststufen gemessen. Die Genauigkeit der Risslupe liegt bei ca. 0,01 mm. Zum Erreichen dieser Genauigkeit müssen die Randbedingungen während der Messung sowie der Auswertung unverändert bleiben. Dazu musste die Rissmessungen immer exakt an derselben Stelle durchgeführt werden, da insbesondere bei Biegeversuchen die Rissbreiten über die Risslänge nicht gleich sind. Aus diesem Grund wurden vor der Versuchsdurchführung fünf Messachsen aufgezeichnet (Bild 3-10). Drei Achsen (c, d, e) befanden sich auf der Trägeroberseite oberhalb der Biegezugbewehrung. Zwei Achsen dienten der seitlichen Rissbreitenbestimmung auf Höhe der Biegezugbewehrung (b) und am Rand des Wirkungsbereiches (a) der Bewehrung h_{eff} = 2,5 \cdot (h – d).

Am Schnittpunkt, eines Querrisses mit einer Achse wurde ein ausgestanzter Aufkleber (Bild 3-10) angebracht und ein Rissfoto aufgenommen. Anschließend wurden die Rissfotos jedes Messpunktes laststufenweise gespeichert. Die eigentliche Rissbreitenmessung erfolgte später mit dem Programm *Metric* anhand der aufgenommenen Rissfotos.

Bild 3-10: Ausgestanzter Aufkleber (a); Risslupe (b); Foto eines Risses aus dem Trägerversuch T3 (c); Messachsen (d)

Versuchsdurchführung Vierpunkt-Biegeversuche

Die Belastung der Träger erfolgte stufenweise; die Laststufen wurden aus den nach DIN EN 1992-1-1 /1/ Tabelle 7.2 / Abschnitt 7.3.3 festgelegten Spannungen in der Biegezugbewehrung berechnet. Zur Spannungsermittlung der Bewehrung wurde die Dehnungsverteilung im Querschnitt unter Annahme des Parabel-Rechteckdiagramms für den Werkstoff Beton ermittelt. Die Belastung erfolgte in 80 N/mm² Schritten für die Biegezugbewehrung. Die Laststufen wurden mit 20 N/mm²/min angefahren. Zunächst wurden die Biegebalken kraftgesteuert und nach dem Erreichen der Gebrauchsspannung weggesteuert belastet. Im folgenden Diagramm ist der Momentenverlauf im Übergreifungsstoß des Trägers T3 über die Zeit dargestellt. Die Standzeiten nach Bild 3-11 entsprechen den Messzeiten der Setzdehnungsmessung (alle 80 N/mm²) bzw. den Rissbreitenmessungen in den Laststufen 240 N/mm², 320 N/mm² und 400 N/mm².

4 Versuchsergebnisse

4.1 Beam-End Versuche

4.1.1 Verbundfestigkeit der untersuchten Bewehrungsstäbe

In den Beam-End Versuchen wurden Zylinderdruckfestigkeiten von 30 N/mm² angestrebt. Die tatsächlichen Festigkeiten am Versuchstag betrugen zwischen 26,4 N/mm² und 38,2 N/mm². Da die Abhängigkeit der Verbundspannungen von der Betondruckfestigkeit über den Zusammenhang $f_{cm}^{2/3}$ gut beschrieben werden kann, werden die Verbundspannungen im Folgenden stets über den Faktor (30 / f_{cm})^{2/3} normiert angegeben. Die Verbundspannung $\tau_{0,1}$ entspricht der Verbundfestigkeit bei einem Schlupf von 0,1 mm und der Wert τ_{max} ist die maximal erreichte Verbundspannung mit dem dazugehörigen Schlupf s_{max} . Die in Tabelle 4-1 angegebenen Verbundfestigkeiten τ sind jeweils die Mittelwerte aus den Beam-End Versuchsserien. Die Einzelwerte der Versuche sind dem Anhang zu entnehmen.

Die größte Verbundfestigkeit wurde im Versuch BEV3-1 mit 22,1 N/mm² bei einer Zylinderdruckfestigkeit von 104 N/mm² und einer Normalspannung von 440 N/mm² erreicht, d.h. die Bewehrungsstäbe wurden in keinem Versuch bis zu ihrer Streckgrenze belastet.

Die im Versuch beobachteten Verbundspannungen bei einem Schlupf von 0,1 mm waren um bis zu 30 % größer als die unter Berücksichtigung aller Einflussparameter ($\alpha_1 = \alpha_4 = \eta_1 = 1,0$; α_2 , α_3 , α_5 , $\eta_2 < 1,0$) aus den mittleren Betondruckfestigkeiten bestimmten Verbundfestigkeiten nach DIN EN 1992-1-1 /1/. Lediglich in den Versuchen, in denen zwei Stäbe aus dem Versuchskörper herausgezogen wurden (BEV10 und BEV11), blieben die im Versuch beobachteten Verbundspannungen um 25 % unter denjenigen, die nach DIN EN 1992-1-1 /1/ berechnet wurden.

Für die Beurteilung von Verbundversuchen werden in /34/ folgende Bewertungskriterien vorgeschlagen:

$$\tau_{0,1}(\phi) \ge 12,0 \cdot \phi^{-0,3} \text{ und } \text{COV}(\tau_{0,1}) \le 15\%$$
(4-1)

$$\tau_{\max}(\phi) \ge 20.0 \cdot \phi^{-0.3} \text{ und } COV(\tau_{\max}) \le 7.5\%$$
(4-2)

Die geforderten Verbundspannungen wurden in den hier beschriebenen Beam-End Versuchen erreicht. Die Grenzwerte für den Variationskoeffizienten wurden in einigen Versuchsserien überschritten.

Versuch	Parameter*	Verbund- spannung $\tau_{0,1} \cdot \left(\frac{30}{f_{cm}}\right)^{2/3}$	Variations- koeffizient $v_{\tau 0,1}$	Verbund- spannung $\tau_{max} \cdot \left(\frac{30}{f_{cm}}\right)^{2/3}$	Variations- koeffizient ν _{τmax}	Schlupf s _{max}	Variations- koeffizient v _{smax}
		[N/mm²]	[%]	[N/mm ²]	[%]	[mm]	[%]
BEV1	Referenz φ = 10 mm c = 1,5· φ	7,9	9,1	10,5	7,3	0,7	39,3
BEV2	$f_{cm} = 55 \text{ N/mm}^2$	6,8	1,6	9,5	5,6	0,6	4,5
BEV3	$f_{cm} = 104 \text{ N/mm}^2$	6,7	2,7	8,9	11,2	0,8	7,5
BEV4	φ = 10 mm	7,7	24,5	12,3	17,0	0,7	20,3
BEV5	φ = 20 mm	10,0	16,6	12,0	8,4	0,3	0,0
BEV6	φ = 50 mm	8,1	0,1	10,1	1,4	0,6	10,1
BEV7	c = 1,0· φ	7,2	-	8,3	0,9	0,5	-
BEV8	$A_{st}/A_s = 0.5$	7,5	-	8,8	3,8	0,5	-
BEV9	p = 6,3 N/mm ²	9,4	1,2	13,9	2,8	0,5	14,3
BEV10	n = 2, a = 2· ¢	4,9	16,5	6,0	8,6	0,7	26,1
BEV11	n = 2, a = 4· ¢	6,0	5,5	7,9	0,2	-	-
BEV12	Schlaufe, a=4·ø	5,8	16,7	7,0	7,41	-	-
BEV13	Stahl: BSW	7,3	6,7	9,8	0,71	0,5	22,5

 Tabelle 4-1:
 Ergebnisse der Beam-End Versuche

*Wenn nicht anders angegeben: $f_{cm} \approx 30 \text{ N/mm}^2$, $\phi = 40 \text{ mm}$, $c = 1.5 \cdot \phi$, $A_{st} / A_s = 1.0$

4.1.2 Rissbildung

Beim Beam-End Versuch bildete sich zunächst ein Riss am unbelasteten Ende der Verbundlänge I_b orthogonal zum Bewehrungsstab (Bild 4-1, Riss 1). Bei Laststeigerung entstand dann ein Riss parallel zum Bewehrungsstab vom unbelasteten Ende des Verbundbereiches bis zur Vorderkante des Versuchskörpers (Bild 4-1, Riss 2). Der Querriss verlief auf den Seitenflächen diagonal in Richtung der Vorderkante des Versuchskörpers. Außerdem entstanden diagonale Risse auf der Oberseite des Versuchskörpers in Richtung des hinteren Auflagers (Bild 4-1, Riss 4). Auf der belasteten Vorderseite konnten kurz vor dem Versagen radial vom Bewehrungsstab ausgehende Risse beobachtet werden.

Bild 4-1: schematisches Rissbild Beam-End Versuche: Draufsicht (links), Übersicht (rechts)

Bei einer Längsspannung von 160 N/mm² betrugen die Längs- und Querrissbreiten bis zu 0,1 mm. Bei Erreichen der maximalen Spannung im Beam-End Versuch (ca. 200 N/mm²) betrugen die Längs- und Querrissbreiten zwischen 0,2 und 0,4 mm. Die Gebrauchsspannung von 320 N/mm², für die die Rissbreiten der Versuche an Übergreifungsstößen gemessen wurden, wurde in den Beam-End Versuchen nur mit hochfestem Beton (BEV-3) erreicht.

4.1.3 Einfluss des Stabdurchmessers

Zur Untersuchung des Einflusses des Stabdurchmessers wurden Beam-End Versuche mit den Stabdurchmessern 10 mm, 20 mm, 40 mm und 50 mm durchgeführt. In den Versuchen stellte sich bei den Versuchen an 20 mm, 40 mm und 50 mm Stäben das oben beschriebene Rissbild ein. In dem Versuch BEV-4-1 mit einem 10 mm Stab war ein reines Ausziehversagen zu beobachten, bei dem der Versuchskörper ungerissen blieb. Bei dem Versuch BEV-4-2, ebenfalls mit einem 10 mm Stab, stellte sich ein Spaltversagen mit dem beschriebenen Rissbild ein. Allerdings blieben die Risse auf der Vorderseite und auf den Seiten kürzer und die Rissbreiten deutlich kleiner als bei größeren Stabdurchmessern.

Die Versuche mit größeren Stabdurchmessern erreichten kleinere maximale Verbundfestigkeiten τ_{max} . Auch die Verbundspannungen bei kleineren Schlupfwerten zeigen diese Tendenz (Bild 4-2). Unerwartet war die geringe Verbundspannung der Versuche an 10 mm Stäben bei einem Schlupf von 0,1 mm. Die Streuung der Versuchsergebnisse nahm mit zunehmendem Stabdurchmesser ab.

Die bezogene Rippenfläche f_R ist in /DIN 488/ für Durchmesser 10 mm mit $f_R = 0,052$ und ab dem Stabdurchmesser 20 mm mit $f_R = 0,056$ festgelegt. Diese Werte werden aufgrund der Herstellungsprozesse in der Regel überschritten. Daher kann für alle untersuchten Stabdurchmesser von 10 mm bis 50 mm von einer bezogenen Rippenfläche f_R von 0,06 bis 0,09 ausgegangen werden. Das heißt die bezogene Rippenfläche war konstant und wuchs nicht mit größerem Durchmesser. Entgegen den Aussagen einiger Autoren (/12/, /13/ und /14/) war ein Einfluss des Stabdurchmessers erkennbar. Die von Viwathanatepa /15/ beschriebene größere Verbundsteifigkeit bei kleineren Durchmessern konnte für den 20 mm Stab beobachtet werden, für den 10 mm Stab allerdings nicht. Der Schlupf bei τ_{max} war bei der Verwendung der großen Durchmessern nicht größer als bei den kleinen Stabdurchmessern.

Die Verbundfestigkeit nach DIN EN 1992-1-1 /1/ wird durch den Zusammenhang $f_{bd} = 2,25 \cdot \eta_1 \cdot \eta_2 \cdot f_{ctd}$ bestimmt. Die Abminderung der Verbundfestigkeit mit dem Faktor $\eta_2 = (132 \cdot \phi) / 100$ ist bei der Verwendung von Stabdurchmessern ≥ 32 mm erforderlich (Bild 4-2). Ein Vergleich der in den Versuchen erzielten Verbundfestigkeiten an Stäben mit einem Durchmesser von 10 mm bis 40 mm zeigt, dass die Verbundspannungen bei einem Schlupf von 0,1 mm für die großen Stabdurchmesser gut durch die Formel beschrieben werden können. Die Versuche an 10 mm Stäben zeigten sehr große Streuungen. Ein Vergleich mit den Versuchsergebnissen aus /29/ zeigt, dass die maximalen Verbundspannungen der 10 mm Stäbe realistisch sind, während die im Versuch ermittelten Verbundspannungen bei einem Schlupf von 0,1 mm fragwürdig sind. In Bild 4-2 werden die Versuchsergebnisse auf den Mittelwert der Versuchsergebnisse des 20 mm Stabdurchmessers bezogen, für den ein η_2 Wert von 1,0 angenommen wurde.

Bild 4-2: Abminderung der Verbundfestigkeit in Abhängigkeit des Stabdurchmessers

4.1.4 Einfluss der Rippung

Die Versuche mit einem Durchmesser von 40 mm wurden mit Bewehrungsstäben von zwei unterschiedlichen Herstellern durchgeführt. In den Versuchen BEV-1 bis BEV-3 und BEV-7 bis BEV-12 wie auch den Trägerversuchen T1 bis T4 wurde Bewehrungsstahl des Stahlwerks Annahütte (Max Aicher GmbH & Co. KG) eingesetzt. Da in den Trägerversuchen T5 bis T7 Bewehrungsstahl der Badische Stahlwerke GmbH vorgesehen war, wurde dessen Verbundspannungs-Schlupfkurve im Versuch BEV-13 getestet. Die bezogene Rippenfläche des 40 mm Bewehrungsstabes des Stahlwerks Annahütte betrug $f_R = 0,064$ und des Bewehrungsstabes der Badischen Stahlwerke $f_R = 0,079$.

Die Rissentwicklung der Beam-End Versuche war unabhängig vom Bewehrungshersteller. Auch die beobachteten Verbundfestigkeiten waren bei beiden Stahlherstellern nahezu gleich groß. Der Bewehrungsstahl des Stahlwerks Annahütte erreichte eine maximale Verbundspannung von 10,5 N/mm² und eine Verbundspannung von 7,9 N/mm² bei einem Schlupf von 0,1 mm, während die Werte des Bewehrungsstahls der Badischen Stahlwerke 9,8 N/mm² (Abweichung 3%) bzw. 7,3 N/mm² (Abweichung 8%) betrugen. Da die Streuung der Versuchsergebnisse eines Herstellers mit ca. 8 % die gleiche Größenordnung wie die Abweichung zwischen den verschiedenen Herstellern hatte, sind die Versuchsergebnisse unabhängig vom Bewehrungsstahlhersteller.

4.1.5 Einfluss der Betondruckfestigkeit

Die Rissentwicklung stellte sich weitgehend unabhängig von der Betondruckfestigkeit ein. Allerdings ist in den Versuchen mit höherfestem Beton am unbelasteten Stabende während des Versuches eine stärkere Schlupfzunahme ab 0,04 mm zu beobachten. Es stellt sich bei den Festigkeiten 55 N/mm² und 105 N/mm² ein Verbundspannungsplateau (Bild 4-3) ein. Bei weiterer Laststeigerung ist die Verbundsteifigkeit deutlich reduziert.

Die maximale Verbundfestigkeit τ_{max} ist proportional zu $f_{cm}^{2/3}$, während die Verbundspannung bei einem Schlupf von 0,1 mm besser durch das Verhältnis $\tau_{0,1} = f_{cm}^{0,6}$ beschrieben werden kann (Bild 4-4).

Vereinfachend werden die Versuchsergebnisse in diesem Bericht in Anlehnung an /1/ auf den Wert $\tau_i = \tau_{i,test} \cdot (30 / f_{cm})^{2/3}$ normiert.

Bild 4-3: Verbundspannungs-Schlupfkurven BEV2-2 ($f_{cm} = 55 \text{ N/mm}^2$) und BEV3-1 ($f_{cm} = 104 \text{ N/mm}^2$)

Bild 4-4: Einfluss der Betondruckfestigkeit auf die Verbundspannung

4.1.6 Einfluss der Betondeckung

Die standardmäßig gewählte Betondeckung von 60 mm bzw. c / ϕ = 1,5 (BEV-1) wurde im Versuch BEV-7 auf 40 mm bzw. c / ϕ = 1,0 verringert. In beiden Versuchsserien wurde unabhängig von der Betondeckung ein Spaltversagen beobachtet.

Das Rissbild in den Versuchen mit zwei Stäben nebeneinander entsprach dem Rissbild in den Versuchen mit nur einem Stab, allerdings mit je einem Längsriss über jedem Bewehrungsstab. Dabei war der Längsriss über dem Bewehrungsstab, dessen Verbund zuerst versagte, deutlich ausgeprägter.

Infolge der kleineren Betondeckung waren die erreichten Verbundspannungen bei allen Schlupfwerten etwas geringer. Bei einem Versuch mit geringer Betondeckung (BEV-2) war die Messtechnik am unbelasteten Stabende fehlerhaft, so dass in Bild 4-5 nur ein Versuchswert dargestellt wird. Die Verringerung der Verbundspannung infolge der kleineren Betondeckung betrug bei einem Schlupf von 0,1 mm 10 %; die maximale Verbundspannung verringerte sich um 30 %. Die Rissbildung der beiden Versuche unterschied sich infolge der veränderten Betondeckung kaum.

Die Betondeckung c_d ist in DIN EN 1992-1-1 /1/ als kleinster Wert aus Betondeckung zur Betonoberfläche und halbem Stababstand definiert. Daher werden in Bild 4-5 die Versuche BEV-1 und BEV-2 mit unterschiedlicher Betondeckung sowie die Versuche BEV-10 und BEV-11 mit unterschiedlichem Stababstand verglichen. Die Versuchsergebnisse werden in den Diagrammen in Bild 4-5 jeweils auf den Mittelwert $\tau_{m,c=1\cdot\phi}$ der Versuchsserie mit der Betondeckung c = 1 · ϕ bezogen.

Bild 4-5: Einfluss der Betondeckung auf die Verbundfestigkeit

Die Größe der Betondeckung wird nach DIN EN 1992-1-1 /1/ über den Faktor $\alpha_2 = 1 - 0,15 \cdot (c_d - \phi) / \phi$ bei der Ermittlung der erforderlichen Verankerungslängen gerader Stäbe berücksichtigt.
Als Betondeckung c_d wird der kleinere Wert aus der horizontalen oder vertikalen Betondeckung und dem halben Stababstand angesetzt. Die kleinste zulässige Betondeckung nach DIN EN 1992-1-1 /1/ ist der einfache Stabdurchmesser, infolgedessen sich der Wert $\alpha_2 = 1,0$ ergibt. Werden größere Betondeckungen gewählt, kann die Verankerungslänge um den Faktor α_2 verringert werden. Anhand von Bild 4-5 wird deutlich, dass die Verbesserung des Verbundes infolge der Betondeckung in den Versuchen durch die Formulierung nach DIN EN 1992-1-1 /1/ gut beschrieben werden kann.

In den Versuchen BEV-10 und BEV-11 wurden die Verbundspannungs-Schlupfkurven zweier Stäbe nebeneinander ermittelt. Während im Versuch BEV-10 ein kleiner Stababstand von 2·\u03c6 (80 mm) gewählt wurde, wurde im Versuch BEV-11 ein Stababstand von 4·\u03c6 (160 mm) getestet.

Werden zwei Stäbe nebeneinander angeordnet, versagt zunächst ein Verbundbereich, während der zweite Stab weiterhin Kraft übertragen kann. Zur Beurteilung der Verbundfestigkeiten wurden nur die jeweils kleineren Verbundfestigkeiten, also diejenigen Stäbe, die zuerst versagten, angesetzt.

Die Verbundspannung bei einem Schlupf von 0,1 mm verringerte sich bei zwei Stäben mit einem Abstand von $4 \cdot \phi$ von 7,9 N/mm² auf 6,0 N/mm² (75 %) und bei einem Abstand von $2 \cdot \phi$ (bzw. $c_d = 1 \cdot \phi$) auf 4,9 N/mm² (62 %) (Bild 4-6). Die maximale Verbundspannung τ_{max} verringerte sich bei der Anordnung von zwei Stäben mit einem Abstand von $4 \cdot \phi$ von 10,5 N/mm² auf 7,9 N/mm² (75 %) und bei einem Abstand von $2 \cdot \phi$ (bzw. $c_d = 1 \cdot \phi$) auf $2 \cdot \phi$ (bzw. $c_d = 1 \cdot \phi$) auf 5,9 N/mm² (57 %).

4.1.7 Einfluss der Querbewehrung

Anhand des Versuches BEV-8 wurde untersucht, wie sich das Verbundverhalten verändert, wenn die Querbewehrung reduziert wird. Im Versuch BEV-8 wurden anstelle von zwei Bügeln ϕ 14 mm (3,1 cm² bzw. $\Sigma A_{st} / A_s = 1,0$ im Übergreifungsstoß) zwei Bügel ϕ 10 mm (1,6 cm² bzw. $\Sigma A_{st} / A_s = 0,5$ im Übergreifungsstoß) vorgesehen. Das Rissbild entwickelte sich zunächst wie in den Versuchen mit einem Querbewehrungsgrad $\Sigma A_{st} / A_s = 1,0$ und die Verbundfestigkeit veränderte sich bei einem Schlupf von 0,1 mm nicht (Bild 4-7). Die maximale Verbundfestigkeit nahm allerdings durch das Halbieren des Querbewehrungsquerschnittes um 15 % ab.

Die erforderliche Verankerungslänge kann nach DIN EN 1992-1-1 /1/ durch Anordnung einer Querbewehrung um den Faktor $\alpha_3 = 1 - k \cdot (\Sigma A_{st} - \Sigma A_{st,min}) / A_s$ verringert werden. Einen Vergleich der gemessenen Verbundfestigkeit mit diesem Ansatz zeigt Bild 4-7. Nach DIN EN 1992-1-1 /1/ muss in Übergreifungsstößen mindestens $\Sigma A_{st} = A_s$ vorgesehen werden. Die Versuchsergebnisse werden in den Diagrammen in Bild 4-7 jeweils auf den Mittelwert $\tau_{m,Ast/As=1}$ der Versuchsserie mit einer Querbewehrung $A_{st}/A_s = 1,0$ (BEV-1) bezogen.

4.1.8 Einfluss des Querdrucks

Im Versuch BEV-9 wurde ein Querdruck im Verbundbereich aufgebracht, indem das vertikale Auflager (Traverse) direkt über dem Verbundbereich angeordnet wurde. Da so der Querdruck kontinuierlich mit der Belastung des Bewehrungsstabes gesteigert wurde, entspricht dies den Verhältnissen im Auflagerbereich eines Biegebalkens und damit der Verankerung der Biegezugbewehrung. Die Kraft in der Traverse wurde kontinuierlich mit Kraftmessdosen gemessen. Der Querdruck betrug:

$$p = \tau \cdot 20 \cdot A_{s} / (b \cdot I_{b}) = \tau \cdot 0.39 [N / mm^{2}]$$
(4-3)

Durch die veränderte Versuchsanordnung entstand am Ende der Verbundlänge kein Querriss. Der Längsriss über der Verbundlänge bildete sich mit mehr Verzweigungen aus als in den Versuchen ohne Querdruck. Auf der Vorderseite des Versuchskörpers entstanden zwei diagonale Risse, die vom Bewehrungsstab zur Oberseite des Versuchskörpers verliefen und ein vertikaler Riss in Richtung der Druckplatte (Bild 4-8).

Bild 4-8: Rissbildung im Beam-End Versuch mit Querdruck BEV-9-1 (Oberseite links, Vorderseite rechts)

Der Querdruck p = 3,6 N/mm² führte bei einem Schlupf von 0,1 mm zu einer Verbesserung der Verbundfestigkeit um 20 %. Bei Erreichen der maximalen Verbundfestigkeit betrug der Querdruck 5,3 N/mm², wodurch die Verbundfestigkeit um 30 % anstieg (Bild 4-9).

Bild 4-9: Einfluss des Querdruckes auf die Verbundspannung

Ist ein Querdruck im Verankerungsbereich vorhanden, kann die erforderliche Verankerungslänge nach DIN EN 1992-1-1 /1/ um den Faktor $\alpha_5 = 1 - 0.04 \cdot p$ verringert werden. In den untersuchten Beam-End Versuchen wurde ein Querdruck von maximal 5,3 N/mm² aufgebracht. Viel höhere Werte sind auch in realen Balkenkonstruktionen nicht erreichbar. Die Verbesserung des Verbundes infolge des Querdruckes kann auch für Stabdurchmesser 40 mm gut durch den Ansatz nach DIN EN 1992-1-1 /1/ beschrieben werden (Bild 4-7, rechts).

4.1.9 Verankerung durch Schlaufen

Im Versuch BEV-12 wurden Bewehrungsschlaufen getestet. Der lichte Abstand der Stäbe betrug $4 \cdot \phi$ und entsprach damit dem Versuch BEV-11, der den Verbund von zwei geraden Stabenden nebeneinander untersuchte. Die Projektion der Verbundlänge der Schlaufe betrug 200 mm bzw. $5 \cdot \phi$ wie bei den Versuchen mit geraden Stäben. Von der Verbundlänge waren 80 mm ($2 \cdot \phi$) gerade und 120 mm gebogen (Bild 4-10). Der Biegerollendurchmesser war mit D_{Br} = 160 mm = $4 \cdot \phi$ deutlich kleiner als nach /1/ vorgegeben.

In den Versuchen mit einer Bewehrungsschlaufe stellte sich ebenfalls am Ende der Verbundlänge ein Querriss ein. Anhand der Risse war die Lage der Schlaufe deutlich erkennbar (Bild 4-10).

Bild 4-10: Rissbild eines Beam-End Versuches mit Schlaufe (links) und Bewhrungsanordnung BEV-12 (rechts)

In den beiden Versuchen mit Schlaufen konnten Normalspannungen von 106 bzw. 160 N/mm² im gezogenen Bewehrungsstab erreicht werden. Die Versuchsserie mit zwei verankerten Stäben nebeneinander mit geradem Stabende erreichte dagegen im Mittel eine Normalspannung von 160 N/mm², das heißt eine Abminderung der Verankerungslänge um 0,7 ist bei diesem sehr kleinen Biegerollendurchmesser (hier D_{Br} = 160 mm, bzw. 4· ϕ). nicht gerechtfertigt. Die Teilflächenpressung vor der Schlaufe war so groß, dass die Betondeckung abgesprengt wurde. Ein Wiederanstieg der τ -s-Kurve mit einem deutlichen Schlupf am Schlaufenbeginn wie in /20/ beschrieben, konnte nicht beobachtet werden.

4.2 Vierpunkt-Biegeversuche

4.2.1 Tragverhalten der Übergreifungsstöße

In den Versuchen T1 bis T5 wurde ein Versagen des Stoßbereiches beobachtet, während in den Versuchen T6 bis T8 ein Biegeversagen auftrat. Die Versagensart war während des Versuches am Rissbild und durch den Vergleich M_{test} / M_u erkennbar (Tabelle 4-2). Hierbei ist M_u ist das Moment, bei dem die experimentell ermittelte Streckgrenze der Biegezugbewehrung erreicht wird. In den Versuchen, in denen die rechnerische Tragfähigkeit unter Annahme von mittleren Materialfestigkeiten erreicht wurde, trat nach Überschreiten der Streckgrenze sekundär ein Versagen der Biegedruckzone auf.

Wurde die Tragfähigkeit des Biegebalkens nicht erreicht, entstanden im Stoßbereich so große Querzugspannungen und Längsrisse, dass die Betondeckung abplatzte und die Stäbe aus den Versuchskörpern herausklappten (Bild 4-11). Das Versagen ging nicht von allen drei Stößen gleichzeitig sondern von einem Stoß aus. Das Versagen wurde in einigen Versuchen vom mittleren Stoß aus und in den anderen Versuchen von einem Stoß in Randlage initiiert. Die volle Tragfähigkeit der Übergreifungen konnte mit einem Stoßfaktor $\alpha_6 = 2,0$ erreicht werden. Die Querbewehrung nach DIN EN 1992-1-1 /1/ für kleinere Durchmesser war auch für die Übergreifungen der 40 mm und 50 mm Stäbe ausreichend.

Bild 4-11:Rissbild T4 (links) und Durchbiegung der Trägerversuche unter der Lasteinleitung (rechts)Tabelle 4-2:Vergleich der rechnerischen Tragfähigkeit mit den Versuchsergebnissen

Ver- such	φ	С	α_6	A_{st}/A_{s}	а	f _{cm}	M _{test}	M _u	M_{test}/M_{u}
						[N/mm ²]	[kNm]	[kNm]	[%]
T1	40	1,5·¢	1,5	1,0	2·¢	40,2	872	980	89
T2	40	1,0·¢	1,5	1,0	2·¢	32,5	834	1000	83
Т3	40	1,5·¢	2,0	1,0	2·¢	33,0	965	964	100
T4	40	1,0·¢	1,5	1,0	2·¢	59,9	505	537	94
T5	40	1,0·¢	1,5	1,0	4 ∙φ	34,6	706	735	96
Т6	40	1,5·φ	2,0	1,7	2·¢	39,2	1022	998	102
Τ7	40	1,5·φ	2,0	1,7 (Oberflächen- bewehrung)	2·¢	34,5	1119	990	104
Т8	50	1,5·¢	2,0	1,0	2·¢	36,8	1397	1343	113

Das grundsätzliche Durchbiegungsverhalten war unabhängig von den Versuchsparametern, wie der Vergleich der Versuche mit gleichem Querschnitt in Bild 4-11 belegt. In den Versuchen T4, T5 und T8 wurden aufgrund der abweichenden Abmessungen andere Durchbiegungen gemessen. In den Versuchen T1 und T2 mit einer kurzen Übergreifungslänge waren die auf die Maximallast bezogenen Durchbiegungen unter der Lasteinleitung am Trägerende etwas geringer als in den Versuchen mit größeren Übergreifungslängen (Bild 4-11).

Die Dehnungen der Längsbewehrung im Stoßbereich wurden mit Dehnungsmessstreifen aufgezeichnet. Die Dehnung steigt im ersten Drittel vom Stabende aus betrachtet stark an, während sich im mittleren Bereich des Stoßes ein Dehnungsplateau einstellte (Bild 4-12). Im hinteren Drittel der Stoßlänge nahm die Stahldehnung dann noch einmal zu. Das Plateau im Mittelbereich war insbesondere bei niedrigen Lasten ausgeprägt. Bei sehr hohen Stoßbelastungen wirkte zunehmend auch der mittlere Bereich des Stoßes mit. In der Mitte des Stoßes war die Stahldehnung in etwa halb so groß wie am Stoßende, bzw. die Hälfte der Kraft von einem Stab auf den anderen übertragen. Zwischen den Versuchsparametern konnten keine Unterschiede in der Längsdehnungsverteilung über die Stoßlänge beobachtet werden.

Die aus den Längsdehnungen ermittelten Verbundspannungen sind in Bild 4-12 (rechts) dargestellt. Es ergaben sich bei einer Normalspannung von 320 N/mm² Verbundspannungen von bis zu 6 N/mm² am Stoßanfang und –ende.

Alle Versuchskörper zeigten deutliche Betonquerdehnungen im ersten und letzten Drittel der Stoßlänge. Das mittlere Drittel der Stoßlänge blieb in der Regel nahezu querdehnungsfrei. Tendenziell wurden die größten Betonquerdehnung oberhalb des Randstoßes gemessen (Bild 4-13). Bei großen Belastungen entwickelten sich aus den Querdehnungen Längsrisse im Stoßbereich. In allen Versuchen wurde der Bügel im Abstand von 4 cm vom Stoßende am stärksten belastet (Bild 4-13). Die Bügeldehnungen blieben in allen Versuchen unterhalb von 1 ‰, so dass ein Fließen der Bügelbewehrung ausgeschlossen werden kann.

Bild 4-13: Betonquerdehnungen (links); Bügeldehnungen (rechts) im Versuch T3

4.2.2 Rissbildung der Biegeversuche

Durch das Eigengewicht und die aufgebrachte Prüfzylinderkraft entstanden zunächst Biegerisse über den Auflagerpunkten. Bei weiterer Laststeigerung entstanden Biegerisse im Bereich des konstanten Momentes zwischen den Auflagerpunkten (Bild 4-14, 1). Im Bereich des Übergreifungsstoßes waren die Rissabstände sichtbar kleiner als außerhalb, da der Bewehrungsgrad im Stoßbereich doppelt so groß war (Bild 4-14, 2). Die größten Rissbreiten befanden sich stets unmittelbar am Ende der Übergreifung (Bild 4-14, 3). Mit der Laststeigerung stellten sich im Übergreifungsbereich zunehmend Risse parallel zur Längsbewehrung ein (Bild 4-14, 4). Diese Risse konnten insbesondere in der Randfaser des Balkens beobachtet werden, traten aber auch seitlich auf Höhe der Biegezugbewehrung auf.

Bild 4-14: Rissbild des Versuchs T2 auf der Oberseite des Versuchskörpers

In den Versuchen mit einem Stoßversagen platzte die Betondeckung am Stoßende ab. In den Versuchen mit einem Biegeversagen konnte eine Schädigung der Druckzone beobachtet werden.

Die mittleren Rissbreiten am Stoßende betrugen unter Gebrauchsspannungen ($\sigma_s \approx 500 \text{ N/mm}^2/(1,15\cdot1,4) = 310 \text{ N/mm}^2$) bis hin zu 0,7 mm im Versuch T6 (Bild 4-15). Durch den Einbau der Oberflächenbewehrung mit Stäben parallel zur Biegezugbewehrung konnte die mittlere Rissbreite unter Gebrauchsspannung am Stoßende auf 0,2 mm reduziert werden (T7).

Eine Übersicht der ermittelten Rissbreiten und Rissabständen enthält Tabelle 4-3. Es werden die Mittelwerte der Rissbreite w_m und die charakteristische Rissbreite w_k als 75 %-Quantile für ein 75 % Vertrauensniveau angegeben. Da die Rissbreiten am Stoßende deutlich größer als die Rissbreiten im und außerhalb des Stoßbereiches waren, sind diese maßgebend für die Beurteilung der Übergreifungsstöße. Es konnten keine Unterschiede zwischen den Rissbreiten über dem mittleren Stoß (Messachse d, Bild 3-10) und den Randstößen (Messachsen c und e) beobachtet werden. Die Rissbreiten seitlich der Bewehrung gemessen in

Achse b nach Bild 3-10 betrugen zwei Drittel der Rissbreite der Randfaser. Die Rissbreite auf Höhe der effektiven Zugzone ($h_{ct.eff} = 2, 5 \cdot d_1$) betrug ein Drittel der Rissbreite in der Randfaser.

Es ist zu berücksichtigen, dass die angegeben Rissbreiten für den Versuch T7 ohne Anrechnung der Oberflächenbewehrung bei der Ermittlung der Spannung in der Biegezugbewehrung gelten. Die Rissbreiten wurden bei Laststufen gemessen, bei denen die Biegezugbewehrung ohne Oberflächenbewehrung eine Spannung von 160 N/mm², 320 N/mm² und 400 N/mm² erreicht hätte. Durch den Einbau der Oberflächenbewehrung vergrößerte sich der Bewehrungsgrad des Versuchskörpers, so dass die Spannung der Biegezugbewehrung im Verhältnis zum Versuchskörper ohne Oberflächenbewehrung um 20 % abnimmt. Daher wurden die Rissbreiten des Versuchskörpers T7 bei einer tatsächlichen Spannung von 130 N/mm², 260 N/mm² und 330 N/mm² gemessen.

		Rissabstände und Rissbreiten bei einer Stahlspannung von 320 N/mm ²							
Test	Untersuchungs- parameter	a _{m,Stoß}	W _{m,Stoß}	W _{k,Stoß}	a _{m,Biegezone}	W m,Biegezone	W k,Biegezone	W _{m,Stoßende}	
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
T1	$c=1,5\cdot\phi,\ \alpha_6=1,5$ $f_{cm}=40\ N/mm^2$	164	0,14	0,21	188	0,30	0,40	0,43	
T2	c=1,0· ϕ , α_6 = 1,5 f _{cm} = 32 N/mm ²	141	0,09	0,13	162	0,20	0,27	0,40	
Т3	c=1,5· ϕ , α_6 = 2,0 f _{cm} = 33 N/mm ²	178	0,17	0,21	186	0,34	0,46	0,62	
T4	$c=1,0{\cdot}\phi,\ \alpha_6=1,5$ $f_{cm}=60\ N/mm^2$	127	0,12	0,17	137	0,20	0,28	0,27	
T5	$c=1,0\cdot\phi,\ \alpha_6=1,5$ $a=4\cdot\phi$	142	0,11	0,14	143	0,28	0,40	0,45	
Т6	$c=1,5\cdot\phi,\ \alpha_6=2,0$ $A_{st}/A_s=2,0$	162	0,14	0,21	174	0,26	0,35	0,70	
Τ7	c=1,5· ϕ , α_6 = 2,0 Oberflächenbew.	90	0,08 (0,10) ¹⁾	0,12	116	0,16 (0,19) ¹⁾	0,27	0,16(0,26) ¹⁾	
Т8	c=1,5·φ, α ₆ = 2,0 φ 50 mm	164	0,16	0,21	168	0,30	0,49	0,55	

Tabelle $- 0$ initiate this abstance a_m and this solution which viet burned biggeversuon	Tabelle 4-3:	Mittlere Rissabstände am	und Rissbreiten w der	Vierpunkt-Biegeversuch
---	--------------	--------------------------	-----------------------	------------------------

¹⁾Unter Anrechnung der Oberflächenbewehrung auf die Biegezugbewehrung

Die Rissbreiten von Bauteilen mit großen Bewehrungsdurchmessern sind nach 7.3.4 DIN EN 1992-1-1 /1/ durch Oberflächenbewehrung oder durch eine explizite Berechnung zu beschränken. In Tabelle 4-4 werden die nach DIN EN 1992-1-1 /1/ ermittelten Rissabstände s_{r,max} und Rissbreiten w_k mit den im Versuch ermittelten Werten verglichen. Dabei wurden die Werte für den Stoßbereich mit dem dort vorhandenen Bewehrungsgrad $\rho_{p,eff,Stoß}$ und außerhalb des Stoßbereiches am Auflager mit halbem Bewehrungsgrad $\rho_{p,eff,Lager}$ berechnet. Die Regeln zur Begrenzung der Rissbreite gelten unabhängig von der Anordnung eines Übergreifungsstoßes für Biegebauteile mit einem Durchmesser von 40 mm. Die Rissbreiten am Stoßende werden in Tabelle 4-4 nicht berücksichtigt, da die großen Rissbreiten infolge des Steifigkeitssprungs am Stoßende nicht durch die Rissbreitenberechnung nach DIN EN 1992-1-1 /1/ abgedeckt werden können.

Während die 75%-Quantile (für das 75 % Vertrauensniveau) der Rissbreiten aus den Versuchsergebnissen gut mit den nach DIN EN 1992-1-1 /1/ ermittelten Rissbreiten w_k übereinstimmen, weichen die Rissabstände z.T. deutlich voneinander ab. Für den Versuch T7, dessen Oberflächenbewehrung bei der Berechnung der

Rissbreite w_k nach DIN EN 1992-1-1 /1/ nicht angesetzt wurde, sind die im Versuch ermittelten Rissabstände und Rissbreiten deutlich kleiner als nach DIN EN 1992-1-1 /1/.

	$\rho_{\text{p,eff,StoB}}$	S _{m,test,Stoß}	Smax,EC,Stoß	W _{k,test,Stoß}	W _{k,EC,Stoß}	$\rho_{\text{p,eff,Lager}}$	S _{m,test,Lager}	S _{max,EC,Lager}	W _{k,test,Lager}	W _{k,EC,Lager}
	[%]	[mm]	[mm]	[mm]	[mm]	[%]	[mm]	[mm]	[mm]	[mm]
T1	7,25	164	153	0,21	0,22	3,62	188	307	0,40	0,40
T2	10,47	141	106	0,13	0,16	5,23	162	212	0,27	0,30
Т3	7,25	178	153	0,21	0,22	3,62	186	307	0,46	0,41
T4	10,47	127	106	0,17	0,15	5,23	137	212	0,28	0,27
T5	7,85	142	142	0,14	0,20	3,93	143	283	0,40	0,38
Т6	7,25	162	153	0,21	0,22	3,62	174	307	0,35	0,40
T7	7,25	90	153	0,12	0,22	3,62	116	307	0,27	0,41
Т8	7,25	164	192	0,21	0,27	3,62	168	383	0,49	0,50

Tabelle 4-4: Rissbreiten und Rissabstände der Trägerversuche bei einer Spannung von 320 N/mm²

Ohne direkte Berechnung kann der Nachweis der Rissbreitenbegrenzung nach DIN EN 1992-1-1 /1/ über den Nachweis des Grenzdurchmessers oder den Stababstand geführt werden. Bei einer zulässigen Rissbreite w_k von 0,4 mm und einem Stabdurchmesser von 40 mm darf die Stahlspannung nach /1/ maximal 187 N/mm²betragen. In den durchgeführten Versuchen mit einem Durchmesser von 40 mm, einem Stoßfaktor $\alpha_6 = 2,0$ und einer Betondeckung c = 1,5· ϕ (T3) wurde im Versuch ohne Oberflächenbewehrung eine Rissbreite w_k = 0,4 mm in der Randfaser erst bei einer Spannung von 320 N/mm² erreicht.

Bei einer zulässigen Rissbreite w_k von 0,3 mm darf für einen Stabdurchmesser von 40 mm die Stahlspannung nach DIN EN 1992-1-1 /1/ maximal 160 N/mm² betragen. In dem Versuch T3 mit einer Betondeckung c = 1,5 · ϕ und einem Stoßfaktor α_6 = 2,0 betrug die Rissbreite w_k bei einer Spannung von 240 N/mm² in der Biegezugzone 0,3 mm. In dem Versuch mit Oberflächenbewehrung (T7) wurde die Rissbreite w_k = 0,3 mm bei einer Spannung von 320 N/mm² knapp erreicht (unter Anrechnung der Oberflächenbewehrung bei 260 N/mm²).

Die Rissbreiten der Längsrisse im Stoßbereich betrugen bis zu einer Spannung der Biegezugbewehrung von 400 N/mm² maximal 0,2 mm. Bei 320 N/mm² waren sie kleiner als 0,1 mm. In den Versuchen T6 und T7 mit verstärkter Querbewehrung im Übergreifungsstoß waren die mittleren Rissbreiten der Längsrisse bis zu einer Spannung der Biegezugbewehrung von 400 N/mm² kleiner als 0,1 mm.

4.2.3 Einfluss des Stabdurchmessers

Der Einfluss des Stabdurchmessers kann anhand der Versuche T3 und T8 beurteilt werden, die beide mit einer Betondeckung von 1,5 · ϕ , einer Zylinderdruckfestigkeit von 30 N/mm², einem Stoßfaktor α_6 von 2,0, einem Abstand der Stöße untereinander von 2 · ϕ und einer Querbewehrung ΣA_{st} von 1,0 · A_s ausgeführt wurden. In den Versuchen mit Stabdurchmessern 40 mm (T3) und 50 mm (T8) konnten nahezu die gleichen Traglasten erzielt werden.

Bild 4-16: Einfluss des Stabdurchmessers auf Tragfähigkeit (links) und Rissbreiten (rechts)

Wie in den Versuchen von Tepfers /4/ ist ein Einfluss des Durchmessers auf die Stoßtragfähigkeit bei konstantem Verhältnis I_0 / ϕ nicht erkennbar. Auch die mittleren Rissbreiten stellten sich in den Versuchen mit einem Stabdurchmesser von 40 und 50 mm sowohl im Stoßbereich als auch außerhalb in ähnlicher Größenordnung ein (Bild 4-16).

Zu beachten sind die unterschiedlichen Streckgrenzen der Stabdurchmesser 40 mm und 50 mm. Da die 50 mm Bewehrung eine Streckgrenze von 540 N/mm² hatte, war das Verhältnis $M_{test}/M_u = 1,13$ mit $\sigma_{s,test} > 540$ N/mm². Die 40 mm Bewehrung hatte dagegen eine Streckgrenze von 570 N/mm², so dass das Verhältnis M_{test}/M_u nur 1,0 betrug, obwohl eine Stahlspannung von $\sigma_{s,test} = 570$ N/mm² erreicht wurde.

4.2.4 Einfluss der Betondruckfestigkeit

Der Einfluss der Betondruckfestigkeit wurde anhand der Versuche T2 und T4 untersucht, die mit einem Stabdurchmesser von 40 mm, einer Betondeckung von 1,0· ϕ (40 mm), einem Stoßfaktor α_6 von 1,5, einem Abstand der Stöße untereinander von 2· ϕ und einer Querbewehrung $\Sigma A_{st}/A_s$ von 1,0 ausgeführt wurden. Die Erhöhung der Zylinderdruckfestigkeit von 33 N/mm² (T2) auf 60 N/mm² (T4) führte zu einer Traglaststeigerung M_{test} / M_u von 14 %. Die Rissbreiten dagegen waren im und außerhalb des Stoßbereiches nahezu unabhängig von der Betondruckfestigkeit (Bild 4-17). Am Stoßende war die Rissbreite im Versuch mit einer Betondruckfestigkeit von 60 N/mm² mit 0,3 mm kleiner als bei 33 N/mm² (0,4 mm).

Im Gegensatz zu dem Versuch mit normalfestem Beton (T2) hatte der Versuchskörper aus hochfestem Beton (T4) auch am Stoßende sehr kleine Betonquerdehnungen (Bild 4-18).

Bild 4-17: Einfluss der Betondruckfestigkeit auf Tragfähigkeit (links) und Rissbreiten (rechts)

Bild 4-18: Betonquerdehnung im Stoßbereich mit normal- (links,T2) und höherfestem Beton (rechts,T4)

Das Dehnungsplateau der Längsbewehrung war auch bei dem Versuch mit höherfestem Beton zu beobachten (Bild 4-19). Dies widerspricht der Beobachtung von /6/, dass bei höherfestem Beton aufgrund der kleinen Stoßlänge der innere Stoßbereich stärker mitträgt. Allerdings wurden hier verhältnismäßig lange Übergreifungen und ein Beton mit nur leicht erhöhter Festigkeit verwendet (Versuch T4).

Bild 4-19: Längsdehnung der Biegezugbewehrung im Stoß mit normal- (links, T2) und höherfestem (rechts, T4) Beton

4.2.5 Einfluss der Übergreifungslänge

Der Einfluss der Übergreifungslänge wurde anhand der Versuche untersucht, die mit einem Stabdurchmesser von 40 mm, einer Betondeckung von $1,5 \cdot \phi$ (60 mm), einer Betondruckfestigkeit von etwa 30 N/mm², einem Abstand der Stöße untereinander von $2 \cdot \phi$ und einer Querbewehrung $\Sigma A_{st} / A_s$ von 1,0 ausgeführt waren. Die Vergrößerung der Übergreifungslänge von $\alpha_6 = 1,5$ (T1) nach DIN EN 1992-1-1 /1/ auf $\alpha_6 = 2,0$ (T3) nach DIN EN 1992-1-1/NA /2/ führte zu einer Traglaststeigerung um 11 %.

Bei der größeren Übergreifungslänge wurden entgegen den Erwartungen größere Rissbreiten im Stoßbereich, am Stoßende und außerhalb des Stoßes beobachtet (Bild 4-20).

Bild 4-20: Einfluss des Stoßfaktors auf Tragfähigkeit (links) und Rissbreiten (rechts)

Der nach DIN EN 1992-1-1 /1/ geforderte Abstand der Übergreifungsstöße in Längsrichtung von mindestens 0,3·I₀ wurde im Rahmen des Versuchsprogrammes nicht untersucht. In allen Versuchen wurden Vollstöße getestet, in denen alle Längsstäbe in einem Querschnitt gestoßen wurden.

4.2.6 Einfluss der Betondeckung

Der Einfluss der Betondeckung auf die Tragfähigkeit von Übergreifungsstößen kann anhand der Versuche T1 und T2 beurteilt werden, die einen Stoßfaktor $\alpha_6 = 1,5$, einen Stabdurchmesser von 40 mm, eine Betondruckfestigkeit von etwa 30 N/mm², einen Abstand der Stöße untereinander von $2 \cdot \phi$ und eine Querbewehrung $\Sigma A_{st}/A_s$ von 1,0 aufwiesen. Die Vergrößerung der Betondeckung von 1,0 $\cdot \phi$ (40 mm im Versuch T2) auf 1,5 $\cdot \phi$ (60 mm im Versuch T1) führte zu einer geringen Traglaststeigerung von 7 %.

Infolge der kleineren Betondeckung waren die Rissbreiten und Rissabstände im und außerhalb des Stoßbereiches kleiner, die Rissbreiten am Stoßende waren bei 320 N/mm² unabhängig von der Betondeckung gleich groß (Bild 4-21).

Wird eine Betondeckung von mehr als dem einfachen Stabdurchmesser realisiert, darf die Übergreifungslänge nach DIN EN 1992-1-1 /1/ um den Wert $\alpha_2 = 1 - 0,15 (c_d - \phi) / \phi$ verringert werden. Der Einfluss der Betondeckung auf die Tragfähigkeit der Übergreifung entspricht für die 40 mm Stäbe der Formel für α_2 (Bild 4-21, links). Infolge der vergrößerten Betondeckung von 40 mm auf 60 mm darf nach DIN EN 1992-1-1 /1/ die Übergreifungslänge mit dem Faktor $\alpha_2 = 1 - 0,15 \cdot (60 - 40) / 40 = 0,93$ abgemindert werden. Dies entspricht in etwa der Verringerung der Tragfähigkeit des Versuchs T2 im Vergleich zum Versuch T1 um den Faktor 83 / 87 = 0,96.

Bild 4-21: Einfluss der Betondeckung auf Tragfähigkeit (links) und Rissbreiten (rechts)

Die Versuche mit reduzierter Betondeckung von $1,0 \cdot \phi$ (T2 und T5) wiesen auch in der Mitte der Stöße deutliche Betonquerdehnungen auf. Die Querdehnung im Versuch T3 mit $1,5 \cdot \phi$ bzw. 60 mm war dagegen in der Mitte sehr klein (Bild 4-22). Während im Versuch T2 bei einem Stoßabstand von $2 \cdot \phi$ sowohl auf Höhe

der Bewehrung als auch in der Randfaser gleich große Querdehnungen beobachtet wurden, waren die Querdehnungen im Versuch mit dem größeren Stoßabstand von 4· ϕ nur in der Randfaser stark ausgeprägt.

4.2.7 Einfluss des Stababstandes

Der Einfluss des Stababstandes in Übergreifungsstößen kann anhand der Versuche T2 und T5 überprüft werden, bei denen als Versuchsparameter der Stababstand variiert wurde (Stabdurchmesser 40 mm, einer Betondeckung 1,0 · ϕ , Stoßfaktor $\alpha_6 = 1,5$, Betondruckfestigkeit 30 N/mm², Querbewehrung $\Sigma A_{st} / A_s = 1,0$). Die Vergrößerung des Abstandes der Stöße untereinander von 2 · ϕ (80 mm) im Versuch T2 auf 4 · ϕ (160 mm) im Versuch T5 führte zu einer Traglaststeigerung von 20 %.

Der lichte Abstand zweier Bewehrungsstöße untereinander muss nach DIN EN 1992-1-1 /1/ mindestens $2 \cdot \phi$ betragen. Durch eine Erhöhung des Abstandes kann die Übergreifungslänge um den Faktor $\alpha_2 = 1 - 0,15 \cdot (c_d - \phi) / \phi$ abgemindert werden. Die Vergrößerung des Stababstandes bei gleich bleibender Betondeckung wird streng nach DIN EN 1992-1-1 /1/ allerdings nicht erfasst, weil der kleinere Werte aus halbem Stababstand und Betondeckung bei der Berechnung von α_2 angesetzt wird.

Der größere Stababstand geht mit einer Verringerung des Bewehrungsgrades einher, wodurch sich die Rissbreiten vergrößern, was auch an den Versuchsergebnissen ablesbar ist. Sowohl innerhalb als auch außerhalb des Stoßes sowie am Stoßende waren die Rissbreiten im Versuch T5 ($a = 4 \cdot \phi$) etwas größer als im Versuch T2 ($a = 2 \cdot \phi$) (Bild 4-23).

Bild 4-23: Einfluss des Stababstandes auf Tragfähigkeit (links) und Rissbreiten (rechts)

Die bezogene Tragfähigkeit des Versuches M_{Test} / M_U mit $a = 4 \cdot \phi$ (T5) war höher als diejenige des Versuches T2 mit einem kleinen Stababstand $a = 2 \cdot \phi$ (Bild 4-23). Der Einfluss des Stababstandes auf die Tragfähigkeit der Übergreifung wird für die 40 mm Stäbe gut mit α_2 nach DIN EN 1992-1-1 /1/ wiedergegeben. Infolge des vergrößerten halben Stababstandes von 40 mm auf 80 mm darf nach DIN EN 1992-1-1 /1/ die

Übergreifungslänge mit dem Faktor $\alpha_2 = 1-0, 15 \cdot (80-40) / 40 = 0,85$ abgemindert werden. Dies entspricht der Steigerung der Tragfähigkeit des Versuches T5 im Vergleich zu T2 um den Faktor 83 / 96 = 0,86.

Ein größerer Stoßabstand führte zu einer Verringerung der Bügeldehnung (Bild 4-24). Die Dehnungsmessstreifen waren auf den horizontalen Bügelschenkeln zwischen zwei Stößen angeordnet. Infolge der größeren Betonfläche zwischen den Stäben war die von den Bügeln aufzunehmende Querzugkraft bei gleicher Spannung der Biegezugbewehrung geringer.

Bild 4-24: Bügeldehnungen in Abhängigkeit der Stahlspannung der Längsbewehrung bei geringem Stababstand (T2, links) und großem Stababstand (T5, rechts)

4.2.8 Einfluss der Querbewehrung bzw. der Oberflächenbewehrung

Der Einfluss zusätzlicher Quer- und Oberflächenbewehrung auf die Tragfähigkeit des Übergreifungsstößes wurde anhand von den Versuchen T3, T6 und T7 überprüft. Alle Versuche wurden mit einem Stabdurchmesser 40 mm, einer Betondeckung 1,5· ϕ (60 mm), einem Stoßfaktor $\alpha_6 = 2,0$, einer Betondruckfestigkeit von etwa 30 N/mm² und einem Stoßabstand von 2· ϕ ausgeführt. Die Traglaststeigerung infolge einer Vergrößerung der Querbewehrung von $\Sigma A_{st} / A_s = 1,0$ (T3) auf $\Sigma A_{st} / A_s = 1,7$ (T6 und T7) betrug lediglich 2 %.

Die Summe der Querbewehrung im Stoßbereich ΣA_{st} muss nach DIN EN 1992-1-1 /1/ größer als der Querschnitt der gestoßenen Bewehrung A_s sein. Diese Querbewehrung ist in den äußeren Dritteln der Übergreifungslänge einzulegen (Bild 4-25, rechts). Wenn mehr als 50 % der Stäbe gestoßen werden und der Abstand der Stöße untereinander a mehr als 10 · ϕ beträgt, sind Bügel erforderlich. Wird mehr als die geforderte Querbewehrung vorgesehen, kann die erforderliche Übergreifungslänge um den Faktor $\alpha_3 = 1 - k (\Sigma A_{sl} - \Sigma A_{st,min}) / A_s$ verringert werden. Für $A_{st,min}$ ist für Übergreifungstöße der Wert 1,0 · A_s anzusetzen. Die Erhöhung der Tragfähigkeit der Versuche T6 und T7 mit erhöhter Querbewehrung war mit 2 % fast nicht vorhanden, dennoch entspricht die Tendenz der Formel nach DIN EN 1992-1-1 /1/ (Bild 4-25, links).

Bild 4-25: Einfluss des Querbewehrungsgrades auf die Tragfähigkeit (links), Querbewehrungsanordnung im Übergreifungsstoß nach DIN EN 1992-1-1 /1/ (rechts)

Eine Vergrößerung der Querbewehrung durch eine Erhöhung der Bügelanzahl hatte im Stoßbereich und am Stoßende keine Auswirkungen auf die beobachteten Rissbreiten (Bild 4-26, links). Infolge einer Oberflächenbewehrung mit erhöhter Quer- und Längsbewehrung wurden in allen Bereichen des Versuchsträgers kleinere Rissbreiten beobachtet. Am Stoßende konnte die mittlere Rissbreite von 0,6 mm auf weniger als 0,2 mm reduziert werden (Bild 4-26, rechts).

Im Versuch T7 mit Oberflächenbewehrung stellten sich deutlich geringere Stahldehnungen als in den übrigen Versuchskörpern ein. Bei einer rechnerischen Stahldehnung von 1,2 ‰ erreichten die Messwerte an den 40 mm Stäben durch die größere Stahlfläche infolge der Oberflächenbewehrung in Längsrichtung lediglich 1,0 ‰ (Bild 4-27). Die Dehnung der Längsbewehrungsstäbe der Oberflächenbewehrung wurde nicht gemessen, entspricht aber aus Gleichgewichtsgründen der Dehnung der Biegezugbewehrung.

Die Umlagerungsfähigkeit der Verbundspannungen innerhalb der Übergreifungslänge hängt von der Betonfestigkeit, den Rippen und der Querbewehrung ab. In den Versuchen T6 und T7 mit erhöhter Querbewehrung, wirken zunächst nur die Anfangs- und Endbereiche des Stoßes mit. Mit steigender Belastung beteiligte sich auch der mittlere Bereich stärker an der Kraftübertragung. Dieses Verhalten entspricht den Beobachtungen im Versuch T3 mit Querbewehrung nach DIN EN 1992-1-1 /1/ (Bild 4-27). Woraus zu schließen ist, dass die Umlagerungsmöglichkeiten bereits mit der Querbewehrung nach DIN EN 1992-1-1 /1/ gegeben sind. Eine Erhöhung der Querbewehrung im Versuch T6 ergab keine deutliche Verminderung der Rissbreiten. Erst durch die Oberflächenbewehrung in der Betondeckung stellten sich überproportional kleinere Rissbreiten ein.

Im Versuch mit Oberflächenbewehrung (T7) waren auch am Stoßende viel kleinere Betonquerdehnungen zu beobachten als im Versuch T3 mit planmäßiger Querbewehrung (Bild 4-28). Die Oberflächenbewehrungsstäbe, die orthogonal zur Biegezugbewehrung angeordnet sind, beteiligen sich an der Aufnahme der Querzugkraft im Stoßbereich. Dadurch verringerte sich die im Versuch beobachtete Querdehnung der Bügel im Stoßbereich des Versuchs T7 (Bild 4-29).

Bild 4-28: Querdehnungsverlauf ohne (links, T3) und mit Oberflächenbewehrung (rechts, T7)

Bild 4-29: Bügeldehnungen im Versuch ohne (links, T2) und mit Oberflächenbewehrung (rechts, T7)

4.3 Zusammenfassung der Versuchsergebnisse

In den Beam-End Versuchen wurde für die 40 mm Stäbe bei einer Betondeckung von 60 mm im Mittel eine Verbundfestigkeit von 7,9 N/mm² bei einem Schlupf von 0,1 mm erreicht.

Aus der Variation der Untersuchungsparameter in den Beam-End Versuchen können für Bewehrungsstäbe mit einem Durchmesser 40 mm folgende Schlussfolgerungen getroffen werden:

- Die Faktoren η_2 für den Stabdurchmesser, α_2 für die Betondeckung, α_4 für den Querbewehrungsgrad und α_5 für den Querdruck nach DIN EN 1992-1-1 /1/ bilden die Versuchsergebnisse gut ab.

Die Ergebnisse der Versuche an Übergreifungsstößen mit 40 mm Bewehrungsstäben lassen sich wie folgt zusammenfassen:

- Eine vergrößerte Übergreifungslänge führte zu einer erhöhten Tragfähigkeit, aber nicht zu kleineren Rissbreiten am Stoßende. Mit einem Beiwert α₆ = 2,0 wird bei einem Vollstoß die volle Tragfähigkeit des ungestoßenen Stabes erreicht.
- Eine größere Betondeckung führte zu größeren Rissbreiten im Balken, am Stoßende blieben die Rissbreiten dagegen gleich groß. Die Tragfähigkeit des Stoßes mit größerer Betondeckung (1,5 · φ) war größer als bei einer Betondeckung von 1,0 · φ.

- Der Übergreifungsstoß im Balken mit der höheren Betondruckfestigkeit erzielte eine höhere Tragfähigkeit und eine kleinere Rissbreite am Stoßende.
- Ein vergrößerter Abstand zwischen den Stößen untereinander führte zu einer erhöhten Tragfähigkeit, aufgrund des geringeren Bewehrungsgrades allerdings zu größeren Rissbreiten.
- Durch einen größeren Querbewehrungsgrad wurde die Tragfähigkeit des Stoßes erhöht. Allein die Anordnung einer Oberflächenbewehrung führt auch zu einer deutlichen Rissbreitenreduktion, insbesondere bei den Hauptrissen an den Enden des Übergreifungsstoßes. Die Wirkung der Oberflächenbewehrung ist wesentlich effektiver als die Vergrößerung der Querbewehrung.

Im Versuch mit 50 mm Bewehrung konnten die gleiche relative Tragfähigkeit und gleiche Rissbreiten wie im Versuch mit 40 mm Bewehrung erzielt werden, wenn alle Parameter wie Betondeckung, Querbewehrung und Stoßlänge in Abhängigkeit des Durchmessers angepasst werden.

5 Beurteilung der normativen Zusatzregeln

5.1 Querbewehrung zur Umschnürung des Verbundbereiches

Zur Sicherstellung des Verbundes ist bei der Verwendung von großen Stabdurchmessern nach Kapitel 8.8 (17) DIN EN 1992-1-1 /1/ eine Verbundsicherungsbewehrung als Querbewehrung im gesamten Bauteil einzulegen. Diese Querbewehrung muss 10 % der Längsbewehrung pro Meter betragen und im Bauteil verankert werden.

Die Oberflächenbewehrung darf bei der Bemessung der Verbundsicherungsbewehrung angerechnet werden. Die Oberflächenbewehrung entspricht nach Anhang J zwei Prozent der Querschnittsfläche des Betons unter Zug außerhalb der Bügel (Bild 5-1, links).

Die Verankerung von Bewehrungsstäben mit großen Stabdurchmessern muss nach DIN EN 1992-1-1 /1/ entweder mithilfe von Ankerkörpern oder durch den Einbau zusätzlicher Umschnürungsbewehrung erfolgen. Die Umschnürungsbewehrung beträgt parallel zur Zugseite $A_{sh} = 0,25 \cdot A_s \cdot n_1$ und orthogonal zur Zugseite $A_{sv} = 0,25 \cdot A_s \cdot n_2$ (Bild 5-1, rechts). Dabei ist n_1 ist die Anzahl der Lagen mit Stäben, die in derselben Stelle im Bauteil verankert sind und n_2 die Anzahl der Stäbe, die in jeder Lage verankert sind.

Bild 5-1: Oberflächenbewehrung (links) und Umschnürungsbewehrung für Verankerungen (rechts) nach DIN EN 1992-1-1 /1/

Ein Vergleich der erforderlichen Bewehrungsmengen nach DIN EN 1992-1-1 /1/ und DIN EN 1992-1-1 NA /2/ für Verankerungen und Übergreifungen ist in Tabelle 5-1 anhand einer Längsbewehrung aus drei Stäben ϕ 40 mm dargestellt. Für Übergreifungsstöße ergibt sich die größte Querbewehrungsmenge.

Längebowohrung 2 12 6 cm ² – 27 7 cm ²	A _{st} / m	A _{st} auf 58,3 cm*
Langsbewenrung 5 · 12,6 cm² = 37,7 cm²	[cm²/m]	[cm ²]
Verbundsicherungsbewehrung: 0,1 \cdot A _s [cm ² /m] =0,1 \cdot 3 \cdot 12, 6 cm ² /m	3,8	2,2
Oberflächenbewehrung: 2% · A _{ct,ext} [cm ²] (die Querstäbe dürfen auf die Verbundsicherungsbewehrung angerechnet wer- den, die Längsstäbe dürfen auf die Biegezugbewehrung angerechnet werden)	7,9	3,9
Verankerung horizontal: $A_{sh} = 0,25 \cdot A_s \cdot n_1 = 0,25 \cdot 12,56 \text{ cm}^2 \cdot 1$	1,8	3,14/3
Verankerung vertikal: $A_{sv} = 0,25 \cdot A_s \cdot n_2 = 0,25 \cdot 12,56 \text{ cm}^2 \cdot 3$	5,4	9,42/3
Stoß $\Sigma A_{st} = 1,0 \cdot A_s = 1,0.12, 6 \text{ cm}^2$	10,5	6,15

Tabelle 5-1: Vergleich der geforderten Querbewehrung für Stabdurchmesser 40 mm

*mit C 30/37 und α_6 = 2,0 ergibt sich eine Übergreifungslänge von 175 cm, d.h. die Hälfte der Querbewehrung wird auf 175 cm / 3 = 58,3 cm verteilt.

Durch die Anordnung einer Oberflächenbewehrung kann die Querschnittsfläche der Biegezugbewehrung reduziert werden. Anhand der Tabelle 5-1 wird ersichtlich, dass sich aus der Oberflächenbewehrung so viel Querbewehrung ergibt, dass die Verbundsicherungsbewehrung bereits abdeckt wird.

Durch eine Erhöhung des Querbewehrungsgrades im Stoßbereich konnte die Tragfähigkeit des Übergreifungsstoßes im Versuch leicht erhöht werden. Die Rissbreite am Stoßende wurde durch den erhöhten Querbewehrungsgrad allerdings nicht beeinflusst, sondern konnte nur wirksam mit einer Längsbewehrung verkleinert werden.

Es ist fraglich, ob für den Nachweis der Rissbreitenbeschränkung eine Oberflächenbewehrung, die zwei Prozent der Querschnittsfläche des Betons unter Zug außerhalb der Bügel entspricht, erforderlich ist. Für die Anwendung der großen Stabdurchmesser wäre eine reduzierte Oberflächenbewehrung über die gesamte Bauteillänge mit einer Oberflächenbewehrung nach DIN EN 1992-1-1 /1/ am Stoßende denkbar. Nach den Untersuchungen, die an der TU Kaiserslautern im Rahmen dieses Forschungsvorhabens durchgeführt wurden, kann die Oberflächenbewehrung in Querrichtung reduziert werden.

Für die Verankerung großer Stabdurchmesser nach DIN EN 1992-1-1 /1/ konnte nicht abschließend geklärt werden, welche Regelungen bezüglich der Querbewehrung erforderlich sind. Die derzeitige Regelung, die den Einbau einer Verbundsicherungsbewehrung, einer Oberflächenbewehrung und einer zusätzlichen Bewehrung im Verankerungsbereich vorgibt, ist unübersichtlich und ergibt große Bewehrungsmengen. In welcher Größenordnung die erforderliche Querbewehrung sinnvoll ist, kann anhand der Beam-End Versuche und Übergreifungen nicht beurteilt werden.

5.2 Anordnung von Übergreifungsstößen

Bewehrungsstöße sind bei der Verwendung von großen Stabdurchmessern nach DIN EN 1992-1-1 /1/ nur bei Bauteilen mit einer Breite von mehr als 1,0 m oder bei einer Stahlspannung von weniger als 80%-f_{yd} zulässig. Nach DIN EN 1992-1-1 NA /2/ dürfen Vollstöße nur mittels mechanischer Verbindungen oder als geschweißte Stöße ausgeführt werden. Übergreifungsstöße in überwiegend biegebeanspruchten Bauteilen sind nur zulässig, wenn maximal 50 % der Stäbe in einem Schnitt gestoßen werden.

Es konnte anhand der durchgeführten Versuche an Vollstößen gezeigt werden, dass unter Einhaltung der geltenden Konstruktionsregeln für Durchmesser ≤ 32 mm auch kleinere Bauteilabmessungen und höhere Spannungen für Bauteile mit großen Stabdurchmessern zugelassen werden können. Die Streckgrenzen der 40 mm Bewehrungsstäbe von 570 N/mm² und der 50 mm Bewehrungsstäbe von 540 N/mm² konnten erreicht bzw. überschritten werden, wenn der erhöhte Stoßfaktor α_6 von 2,0 nach DIN EN 1992-1-1 NA /2/ und eine Betondeckung c, die dem anderthalbfachen Stabdurchmesser entsprach, verwendet wurde. Eine Betondeckung c / $\phi = 1,5$ der Biegezugbewehrung wird in Bauteilen mit großen Stabdurchmessern erforderlich, da zur Sicherstellung der Dauerhaftigkeit der Oberflächenbewehrung eine ausreichende Betondeckung

vorgesehen werden muss. Für die Rissbreitenbeschränkung ist eine Oberflächenbewehrung in Längsrichtung unerlässlich.

5.3 Zusammenfassung der Beurteilung der normativen Regelungen

Tabelle 5-2 enthält eine Übersicht der Zusatzregelungen und einen Vorschlag für eine verbesserte Regel.

 Tabelle 5-2:
 Überprüfung der Regelungen nach /1/ und /2/ und Vorschlag einer verbesserten Regel

Erläutorupg		E	Vorschlag	
	lauterung	φ12 - φ32 mm	Zusatz für ø40 mm	Zusatz für ø40 mm
Verbund- festigkeit			f _{bd} = 2,25·η₁·η₂·f _{ctd} η₂ = 1,0 für φ ≤ 32 mm	η ₂ = (132-φ)/100 für φ > 32 mm
	Form der Verankerung	Gerade Stabenden, Winkelhaken, Haken, Schlaufen, ange- schweißte Querstäbe	Verankerung mit Ankerkör- pern oder geraden Stabenden mit umschnürenden Bügeln	wurde im Rahmen des Forschungsprojektes nicht untersucht
erung	Grundmaß der Veranke- rungslänge	l _{b,rqd} = (φ/4)·(σ _{sd} /f _{bd}) σ _{sd} = Stahlspannung im GZT am Beginn der Verankerungslänge	NA /2/: Zur Verankerung gerader Stäbe $I_{b,rqd}$ mit $\sigma_{sd} = f_{yd}$, müssen die ersten endenden Stäbe mindes- tens um das Maß d über den Nullpunkt der Zugkraft- linie hinausgeführt werden. Als längsversetzt gelten Stäbe mit einem Abstand \geq $I_{b,rqd}$ mit $\sigma_{sd} = f_{yd}$.	wurde im Rahmen des Forschungsprojektes nicht untersucht
Veranke	Beton- deckung	$\begin{array}{l} \alpha_2 = 1 \ -0, 15 \cdot (c_d - \phi) \ /\phi \\ 0, 7 \le \alpha_2 \le 1, 0 \\ c_d = \min \ (a/2, \ c_1, \ c) \\ NA \ /2/: \ \alpha_2 = 1, 0 \end{array}$		$\alpha_2 = 1 - 0,15 \cdot (c_d - \phi) / \phi$ gilt auch für ϕ 40 mm $0,7 \le \alpha_2 \le 1,0$ $c_d = min (a/2, c_1, c)$
	Einfluss der Querbe- wehrung	$\alpha_{3} = 1 - K \cdot \lambda$ $0,7 \leq \alpha_{3} \leq 1,0$ K nach Bild 8.4 (0,1) $\lambda = (\Sigma A_{st} - \Sigma A_{st,min}) / A_{s}$ $\Sigma A_{st,min} = 0,25 \cdot A_{s} f \ddot{u} r$ Balken	In Verankerungen ohne Querdruck zusätzlich zur Querkraftbewehrung: Quer- bewehrung parallel zur Zugseite $\geq 0,25 \cdot A_s \cdot n_1$ und orthogonal zur Zugseite $\geq 0,25 \cdot A_s \cdot n_2$ mit s _{max} $\leq 5 \cdot \phi_1$	wurde im Rahmen des Forschungsprojektes nicht untersucht
	Einfluss des Querdrucks	α ₅ = 1 - 0,04 · p 0,7 ≤ α ₅ ≤ 1,0		α ₅ = 1 - 0,04 · p gilt auch für φ 40 mm 0,7 ≤ α₅ ≤ 1,0
Staffelung der Bewehrnd		Ausreichende Beweh- rung ist nach 9.2.1.3 mit Zugkraftdeckung im GZG und GZT vorhan- den	NA /2/: In Bauteilen mit h ≥ 800 mm darf die Beweh- rung gestaffelt werden	wurde im Rahmen des Forschungsprojektes nicht untersucht

Erläutorung		E	Vorschlag		
		φ12 - φ32 mm	Zusatz für	Zusatz für	
	Beton- deckung	Mindestbeton-deckung c _{min,b} ≥ φ		keine Änderung	
Verbundsicherung	Quer- bewehrung		NA /2/: Querbewehrung 0,1·A _s [cm ² /m] über die gesamte Balkenlänge, die die Zugbewehrung um- schließt. Oberflächenbe- wehrung darf dafür heran- gezogen werden. Jeder zweite Längsstab muss von einem Bügelschenkel gehal- ten werden	wurde im Rahmen des Forschungsprojektes nicht untersucht	
	Art des Be- weh- rungsstoßes	Übergreifungsstöße mit oder ohne Haken, geschweißte Stöße, mechanische Verbin- dungen	NA /2/: mechanische Ver- bindungen oder geschweiß- te Stöße, Übergreifungsstö- ße nur mit einem Stoßanteil ≤ 50 %	Übergreifungsstöße mit einem Stoßanteil bis 100 %, geschweißte Stöße, mechanische Verbindungen	
Übergreifungsstoß	Übergrei- fungslänge	$\begin{split} I_0 &= \alpha_1 \cdot \alpha_3 \cdot \alpha_5 \cdot \alpha_6 \cdot \frac{\phi \cdot \sigma_{sd}}{4 \cdot f_{bd}} \\ \text{mit } \alpha_6 &= 1,5, \text{ wenn} \\ \text{StoBanteil} &> 50\% \\ \text{NA } /2 /: \alpha_6 &= 1,4 \text{ für } \phi < \\ 16 \text{ mm und } 2,0 \text{ für } \phi \geq \\ 16 \text{ mm für ZugstoB mit} \\ \text{StoBanteil} &> 33\% \end{split}$		$I_{0} = \alpha_{1} \cdot \alpha_{3} \cdot \alpha_{5} \cdot \alpha_{6} \cdot \frac{\phi \cdot \sigma_{sd}}{4 \cdot f_{bd}}$ mit $\alpha_{6} = 1,4$ für $\phi < 16$ mm und 2,0 für $\phi \ge 16$ mm	
	Mindestab-		Mindestbauteilabmessung	Regel kann entfallen	
	Stahl-	$\sigma_{sd} \leq f_{yd}$	$\sigma_{sd} \le 80\% f_{yd}$	σ _{sd} ≤ f _{yd} , wenn der Riss- breitennachweis durch direkte Berechnung erfüllt ist, bzw. wenn Oberflächenbewehrung eingelegt wird	
	Staffelung der Beweh- rung	Stöße sind versetzt anzuordnen, Längsab- stand zweier benach- barter Stöße ≥ 0,3·l₀	NA /2/: Übergreifungsstöße mit maximal 50 % Stoßan- teil sind mit einem Längsabstand der Stoßmit- ten \geq 1,5 · I ₀	Regel kann entfallen	
	Quer- bewehrung	$\begin{array}{l} \alpha_{3}=1 - K \cdot \lambda \\ 0,7 \leq \lambda \leq 1,0 \\ \lambda = (\Sigma A_{st} - \Sigma A_{st,min}) / A_{s} \\ K \text{ nach Bild 8.4 } (0,1) \\ \Sigma A_{st,min}=1,0 \cdot A_{s} \cdot (\sigma_{sd}/f_{yd}) \\ f ür Übergreifungen \\ \Sigma A_{st} \geq 1,0 \cdot A_{s} \\ Die Querbewehrung \\ auf je 1/3 \cdot I_{0} \text{ im An-} \\ fangs- und Endbereich \\ von I_{0} \end{array}$		$\begin{array}{l} \alpha_{3}=1 - K \cdot \lambda \\ \text{gilt auch für } \phi \ 40 \ \text{mm} \\ 0,7 \leq \lambda \leq 1,0 \\ \lambda = (\Sigma A_{\text{st}} - \Sigma A_{\text{st,min}}) \ / \ A_{\text{s}} \\ \text{K nach Bild 8.4 } (0,1) \\ \Sigma A_{\text{st,min}}=1,0 \cdot A_{\text{s}} \cdot (\sigma_{\text{sd}}/f_{\text{yd}}) \\ \text{für Übergreifungen} \\ \Sigma A_{\text{st}} \geq 1,0 \cdot A_{\text{s}} \\ \text{Die Querbewehrung auf} \\ \text{je 1/3} \cdot I_{0} \ \text{im Anfangs- und} \\ \text{Endbereich von } I_{0} \end{array}$	

6 Zusammenfassung und offene Fragestellungen

Die Bemessungs- und Konstruktionsregeln für Verankerungen und Übergreifungsstöße nach DIN EN 1992-1-1 /1/ wurden für kleine Stabdurchmesser aus umfangreichen Versuchsserien abgeleitet. Die zusätzlichen Bemessungs- und Konstruktionsregeln für große Stabdurchmesser ≥ 32 mm im Nationalen Anhang zu DIN EN 1992-1-1 /1/ basieren auf Versuchsserien zu bauaufsichtlichen Zulassungen (abZ).

In der Literatur finden sich widersprüchliche Aussagen über den Einfluss des Stabdurchmessers auf das Verbundtragverhalten in Verankerungen und Übergreifungen. Während einige Autoren eine Abminderung der Verbundfestigkeit beim Einsatz von großen Stabdurchmessern festgestellt haben, ist der Einfluss nach anderen Autoren vernachlässigbar. Nach DIN EN 1992-1-1 /1/ ist die Verbundfestigkeit für den Stabdurchmesser 40 mm aufgrund einer größeren Spaltneigung abzumindern.

Im Rahmen dieses Forschungsvorhabens wurde die Übertragbarkeit der geltenden Regelungen für die Verbundfestigkeit und für Übergreifungen von Stabdurchmessern ≤ 32 mm auf größere Stabdurchmesser anhand von 33 Beam-End Versuchen und acht Versuchen an Übergreifungsstößen überprüft. Außerdem wurde die Erfordernis der verschärften Regelungen für große Stabdurchmesser nach Kapitel 8.8 DIN EN 1992-1-1 /1/ für den Verankerungen und Übergreifungen diskutiert.

Die Ergebnisse der eigenen Untersuchungen lassen sich wie folgt zusammenfassen:

- Die Abminderung der Verbundspannung nach DIN EN 1992-1-1 /1/ mit dem Faktor $\eta_2 = (132 \phi) / 100$ entspricht den Versuchsergebnissen für die Stabdurchmesser 20 mm, 40 mm und 50 mm.
- Die bei der Bemessung von Verankerungen und Übergreifungen nach DIN EN 1992-1-1 /1/ geltenden Faktoren zur Berücksichtigung der Betondeckung α_2 , des Querbewehrungsgrades α_4 und des Querdrucks α_5 können auch für große Stabdurchmesser angewendet werden.
- Übergreifungsstöße sind entgegen den geltenden Regeln aus DIN EN 1992-1-1/NA /2/ auch mit großen Durchmessern ≥ 32 mm als Vollstöße ausführbar.
- Mit einer Betondeckung $c = 1,5 \cdot \phi$ und einem Stoßfaktor $\alpha_6 = 2,0$ konnte die experimentell ermittelte Streckgrenze der Biegezugbewehrung $f_{vm} = 570$ N/mm² in den Versuchen erreicht werden.
- Der Nachweis der Rissbreitenbeschränkung im Grenzzustand der Gebrauchstauglichkeit ist allerdings nicht zu erbringen, da in allen Versuchen große Rissbreiten am Stoßende von bis zu 0,7 mm beobachtet wurden.
- Für den Rissbreitennachweis am Stoßende ist eine zusätzliche Längsbewehrung als Oberflächenbewehrung aus kleinen Bewehrungsdurchmessern unverzichtbar. Diese Längsbewehrung ist durch die nach DIN EN 1992-1-1/NA /2/ geforderte Oberflächenbewehrung auf der sicheren Seite abgedeckt.

Das Projektziel wurde erreicht.

Folgende "neue" offene Fragestellungen ergaben sich während der Projektbearbeitung:

- Die erforderliche Menge der Oberflächenbewehrung für den Nachweis der Rissbreitenbeschränkung in Biegebauteilen mit großen Stabdurchmessern ist nach wie vor ungeklärt.
- Ob eine Oberflächenbewehrung nach DIN EN 1992-1-1 /1/ am Stoßende, kombiniert mit einer reduzierten Oberflächenbewehrung im übrigen Bauteil die Anforderungen an die Tragfähigkeit und Gebrauchstauglichkeit erfüllt, kann bisher nicht abschließend beurteilt werden.
- Anstelle von Endverankerungen von Stäben mit großen Stabdurchmessern werden häufig Übergreifungen mit Stäben mit kleineren Stabdurchmessern gewählt, die auf einer kürzeren Länge verankert werden können. Ob die Zusatzregeln für große Stabdurchmesser auch in Übergreifungen von großen mit kleineren Stabdurchmessern erforderlich sind, sollte geklärt werden.
- Die nach DIN EN 1992-1-1 /1/ erforderliche Staffelung der Bewehrung war nicht Bestandteil dieses Forschungsvorhabens und ist nach Cairns /35/ nicht erforderlich. Eine Bewertung für große Stabdurchmesser sollte anhand von Versuchen erfolgen.
- Die Regelungen nach DIN EN 1992-1-1 /1/ und DIN EN 1992-1-1/NA /1/ bezüglich der erforderlichen Querbewehrung in Bauteilen mit großen Stabdurchmessern sind unübersichtlich und ergeben große Bewehrungsmengen. Eine Vereinfachung der geltenden Regelungen zur Oberflächenbewehrung,

Verbundsicherungsbewehrung und einer zusätzlichen Bewehrung im Verankerungsbereich ist anzustreben, um die Praxistauglichkeit zu verbessern.

• Die erforderliche Querbewehrungsmenge für die Endverankerung großer Stabdurchmesser sollte weiterführend untersucht werden.

7 Literaturverzeichnis

- /// DIN EN 1992-1-1:2011-01: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
- /2/ DIN EN 1992-1-1/NA:2011-01: Nationaler Anhang National festgelegte Parameter Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau.
- /3/ Goto, Y. (1971): Cracks Formed in Concrete Around Deformed Tension Bars. ACI Journal Proceedings, Vol. 68, Issue 4, S. 244-251
- /4/ Tepfers, R. (1973): A theory of Bond Applied to Overlapped Tensile Reinforcement Splices for Deformed Bars. Chalmers University of Technology, Division of Concrete Structures, Publication V. 73, No. 2, 1973
- /5/ Sippel, T.; Moersch, J. (2014): Verbund Neue Entwicklungen in Forschung und Normung. Massivbau im Wandel, Festschrift zum 60. Geburtstag von Josef Hegger, Lehrstuhl und Institut f
 ür Massivbau der RWTH Aachen, Ernst & Sohn
- /6/ Burkhardt, C.J. (2000): Zum Tragverhalten von Übergreifungsstößen in hochfestem Beton. Dissertation Lehrstuhl und Institut für Massivbau, RWTH Aachen, Heft 10
- /7/ Ferguson, P. ; Briceno, E. (1969): Tensile Lap Splices. Research Report No. 113-2, Texas Highway Department, Center for Highway Research, The University of Texas at Austin
- /8/ Model Code (2012): Final draft. Fib Bulletin No. 65 und 66, Federation International du Béton (fib)
- /9/ Eligehausen, R. (1979): Übergreifungsstöße zugbeanspruchter Rippenstäbe mit geraden Stabenden. DAfStb, Beuth Verlag, Heft 301
- /10/ Martin, H.; Noakowski, P. (1981): Verbundverhalten von Betonstählen Untersuchungen auf der Grundlage von Ausziehversuchen. DAfStb, Beuth Verlag, Heft 319, 1981
- /11/ Kreller, H. (1990): Zum nichtlinearen Trag- und Verformungsverhalten von Stahlbetonstabtragwerken unter Last- und Zwangeinwirkung. DAfStb, Heft 409, Beuth-Verlag
- /12/ Rehm, G. (1961): Über die Grundlagen des Verbundes zwischen Stahl und Beton. Schriftenreihe des DAfStb, Heft 138, Verlag Ernst & Sohn, Berlin 1961
- /13/ Martin, H. (1973): Zusammenhang zwischen Oberflächenbeschaffenheit Verbund und Sprengwirkung. Deutscher Ausschuss für Stahlbeton, Heft 228, 1973
- /14/ Steuck, K.P.; Pang, J.B.K.; Eberhard, M.O.; Stanton, J.F. (2007): Anchorage of large-diameter reinforcing bars grouted into ducts. Draft Research Report, Washington State Transportation Center (TRAC)
- /15/ Viwathanatepa, S.; Popov, E.P.; Bertero, V.V. (1979): Effects of generalized loadings on bond of reinforcing bars embedded in confined concrete blocks. Report no. UCB/EERC-79/22 Berkeley, University of California
- /16/ Royles, R.; Morley, P.; Kahn, M. (1982): The Behaviour of Reinforced Concrete at elevated temperatures with particular Reference to Bond Strength. Bond in concrete / Proceedings of the International Conference on Bond in Concrete, London, Applied Science Publishers
- /17/ Eligehausen, R.; Popov, E.; Bertero, V. (1983): Local Bond Stress-Slip Relationships of deformed bars under generalized excitations. Experimental Results and Analytical Model. Report No. UCB/EERC-83/23 University of California, Berkeley, California
- /18/ Rostásy, F.S.; Scheuermann, J. (1987): Verbundverhalten einbetonierten Betonrippenstahls bei extrem tiefer Temperatur. Schriftenreihe des DAfStb, Heft 380, Berlin, Ernst & Sohn Verlag

- /19/ Schenkel, M. (1998): Zum Verbundverhalten von Bewehrung bei kleiner Betondeckung. Institut für Baustatik und Konstruktion. Dissertation, Eidgenössische Technische Hochschule Zürich
- /20/ Schmidt-Thrö, G.; Stöckl, S.; Kupfer, H. (1988): Verankerung der Bewehrung am Endauflager bei einachsiger Querpressung und Einfluss einer einachsigen Querpressung und der Verankerungslänge auf das Verbundverhalten von Rippenstählen im Beton. Schriftenreihe des DAfStb, Heft 389
- /21/ Chinn, J.; Ferguson, P.M; Thompson, J.N. (1955): Lapped Splices in Reinforced Concrete Beams. ACI Journal Proceedings, Vol. 52, Issue 10, Seite 201-213
- /22/ Plizzari, G.A.; Deldossi, M.A., Massimo, S. (1998): Transverse reinforcement effects on anchored deformed bars. Magazine of Concrete Research, Thomas Telford Ltd., 50, No. 2, Seite 161-177
- /23/ Untrauer, R.E.; Henry, R.L.(1965): Influence of Normal Pressure on Bond Strength, ACI Journal Proceedings, Vol. 62, Issue 5, Seite 577-586
- /24/ Robins, P.J.; Standish, I.G. (1982): Effect of Lateral Pressure on bond of Reinforcing Bars in Concrete. Proceedings of the International Conference on Bond in Concrete 1982, Applied Science Publishers London, Seite 262-272
- /25/ Leonhardt, F.: Vorlesungen über Massivbau Teil 1 (1983): Grundlagen zur Bemessung im Stahlbetonbau. Berlin; Heidelberg; New York; Tokyo: Springer, 3. Auflage
- /26/ RILEM Recommendations RC6 (1983): bond test for reinforcement steel. 2. Pull-out test. TC9-RC
- /27/ RILEM Recommendations RC5 (1982): bond test for reinforcement steel. 1. Beam test. TC9-RC
- /28/ Cairns, J.; Plizzari, G.A. (2002): Do we need a standard test for bond? Bond in Concrete from research to standards. Budapest
- /29/ Wildermuth, A. (2013): Untersuchungen zum Verbundverhalten von Bewehrungsstäben mittels vereinfachter Versuchskörper, Schriftenreihe DAfStb, Heft 609, Beuth Verlag, Berlin
- /30/ ASTM International (2010): A944-10: Standard Test Method for Comparing Bond Strength of Steel Reinforcing Bars to Concrete Using Beam-End Specimens. Distributed under ASTM license by Beuth Verlag
- /31/ Janovic, K. (1986): Verbundverhalten von Bewehrungsstählen unter Dauerbelastung in Normal- und Leichtbeton. Schriftenreihe des DAfStb, Heft 367, S. 5-43
- /32/ Soroushian, P.; Choi, K.-B. (1991): Analytical Evaluation of Straight Bar Anchorage Design in Exterior Joints. ACI Structural Journal, Vol. 88, Issue 2, Seite 161-168
- /33/ DIN 488-1 (2009): Betonstahl Teil 1, Beuth-Verlag, Berlin
- /34/ Hofmann, J.; Schmidt, C., Sippel, T.(2014): The beam end test as a test specimen for the bond of reinforcement bars in concrete. Structural concrete, Ernst & Sohn, zur Veröffentlichung eingereicht
- /35/ Cairns, J. (2014): Staggered lap joints for tension reinforcement. Structural Concrete 15, 1/2014, Seite 45-54, Ernst & Sohn

ANHANG	BEAM END VERSUCHE	51
A.1	Beam End Versuche 1-1 und 1-2	51
A.2	Beam End Versuche 1-3 und 1-4	52
A.3	Beam End Versuche 2-1 und 2-2	53
A.4	Beam End Versuch 3-1	54
A.5	Beam End Versuche 4-1 und 4-2	55
A.6	Beam End Versuche 4-3 und 4-4	56
A.7	Beam End Versuche 5-1 und 5-2	57
A.8	Beam End Versuch 5-4	58
A.9	Beam End Versuche 6-1 und 6-2	59
A.10	Beam End Versuche 7-1 und 7-2	60
A.11	Beam End Versuche 8-1 und 8-2	61
A.12	Beam End Versuche 9-1 und 9-2	62
A.13	Beam End Versuche 10-1 und 10-2	63
A.14	Beam End Versuche 10-3 und 10-4	64
A.15	Beam End Versuche 11-1 und 11-2	65
A.16	Beam End Versuche 12-1 und 12-2	66
A.17	Beam End Versuche 13-1 und 13-2	67
A.18	Verbundspannungen	68
ANHANG	BALKENVERSUCHE	69
A.19	Versuch T1	69
A.20	Versuch T2	73
A.21	Versuch T3	76
A.22	Versuch T4	79
A.23	Versuch T5	82
A.24	Versuch T6	85
A.25	Versuch T7	88
A.26	Versuch T8	91
A.27	Rissbreiten	94

Anhang Beam End Versuche

A.1 Beam End Versuche 1-1 und 1-2

BEV 1-1

A.2 Beam End Versuche 1-3 und 1-4

Verbundspannungs-Schlupf-Beziehung

BEV 1-3

A.3 Beam End Versuche 2-1 und 2-2

Verbundspannungs-Schlupf-Beziehung

A.4 Beam End Versuch 3-1

Verbundspannungs-Schlupf-Beziehung

BEV 3-1

A.5 Beam End Versuche 4-1 und 4-2

Rissbild

Bei Versuch BEV4-1 stellte sich ein Ausziehversagen ein

BEV 4-1

A.6 Beam End Versuche 4-3 und 4-4

Verbundspannungs-Schlupf-Beziehung

A.7 Beam End Versuche 5-1 und 5-2

Verbundspannungs-Schlupf-Beziehung

BEV 5-1

A.8 Beam End Versuch 5-4

Verbundspannungs-Schlupf-Beziehung

BEV 6-1

A.10 Beam End Versuche 7-1 und 7-2

Verbundspannungs-Schlupf-Beziehung

BEV 7-2

A.11 Beam End Versuche 8-1 und 8-2

Verbundspannungs-Schlupf-Beziehung

BEV 8-1

A.12 Beam End Versuche 9-1 und 9-2

2,1

2,1

Verbundspannungs-Schlupf-Beziehung

Rissbild

BEV 9-1

BEV 9-2

A.13 Beam End Versuche 10-1 und 10-2

Verbundspannungs-Schlupf-Beziehung

BEV 10-2
A.14 Beam End Versuche 10-3 und 10-4

Verbundspannungs-Schlupf-Beziehung

BEV 10-4

Verbundspannungs-Schlupf-Beziehung

BEV 11-2

A.16 Beam End Versuche 12-1 und 12-2

Verbundspannungs-Schlupf-Beziehung

BEV 12-1

BEV 12-2

A.17 Beam End Versuche 13-1 und 13-2

A.18 Verbundspannungen

	Versuch	τ _{0,01}	τ _{0,10}	τ _{0,15}	τ _{1,0}	τ _{max}		
BEV 1	Mittelwert [N/mm ²]	3,42	7,49	8,29	9,84	10,00		
	Variationskoeffizient [%]	17,33	5,71	7,61	6,05	39,33		
BEV 2	Mittelwert [N/mm ²]	4,25	10,27	10,42	13,87	14,25		
	Variationskoeffizient [%]	0,13	1,58	0,68	3,98	5,61		
BEV 3	Mittelwert [N/mm ²]	5,67	15,44	15,44	20,47	20,49		
	Variationskoeffizient [%]	0,24	2,66	2,66	11,05	11,15		
BEV 4	Mittelwert [N/mm ²]	4,29	7,03	8,16	11,06	11,22		
	Variationskoeffizient [%]	0,42	26,43	19,55	9,58	13,83		
BEV 5	Mittelwert [N/mm ²]	6,07	10,13	10,72	11,10	12,12		
	Variationskoeffizient [%]	26,97	13,60	16,32	17,20	5,56		
BEV 6	Mittelwert [N/mm ²]	3,11	8,07	8,49	9,91	10,05		
	Variationskoeffizient [%]	0,09	0,26	1,00	2,93	1,20		
BEV 7	Mittelwert [N/mm ²]	3,46	7,46	7,83	8,47	8,64		
	Variationskoeffizient [%]	-	-	-	-	-		
BEV 8	Mittelwert [N/mm ²]	2,79	8,21	9,00	9,06	9,58		
	Variationskoeffizient [%]	-	-	-	-	-		
BEV 9	Mittelwert [N/mm ²]	5,75	11,01	12,20	13,87	16,30		
	Variationskoeffizient [%]	0,04	1,22	1,39	27,33	2,78		
BEV 10	Mittelwert [N/mm ²]	3,06	5,46	5,77	6,49	6,62		
	Variationskoeffizient [%]	48,69	19,07	16,58	9,19	9,38		
BEV 11	Mittelwert [N/mm ²]	3,13	6,92	7,69	9,11	9,13		
	Variationskoeffizient [%]	4,97	5,52	4,14	0,54	0,23		
BEV 12	Mittelwert [N/mm ²]	4,74	5,69	5,95	6,86	6,76		
	Variationskoeffizient [%]	0,30	16,65	11,88	7,74	16,89		
BEV 13	Mittelwert [N/mm ²]	3,09	8,03	8,63	9,80	9,89		
	Variationskoeffizient [%]	0,00	6,69	3,28	2,09	0,71		

Anhang Balkenversuche

A.19 Versuch T1

Bewehrung

Plastikrohr d = 14 mm

Rissbreiten

.

Durchbiegung und Stahllängsspannung

A.20 Versuch T2

Bewehrung

Rissbreitenmessungen

Querdehnungen (Bügel und Beton) im Stoßbereich

A.21 Versuch T3

Bewehrung

A.22 Versuch T4

Bewehrung

Querdehnungen (Bügel und Beton) im Stoßbereich

Stahllängsdehnungen

Verbundspannungsverläufe

A.23 Versuch T5

Bewehrung

Rissbreitenmessungen

Durchbiegung und Stahllängsspannung

Querdehnungen (Bügel und Beton) im Stoßbereich

500

600

Stahllängsdehnungen

Verbundspannungsverläufe

A.24 Versuch T6

Bewehrung

Rissbreitenmessungen

Querdehnungen (Bügel und Beton) im Stoßbereich

Stahllängsdehnungen

Verbundspannungsverläufe

A.25 Versuch T7

Bewehrung

Rissbreitenmessungen

Durchbiegung und Stahllängsspannung

Querdehnungen (Bügel und Beton) im Stoßbereich

Stahllängsdehnungen

Verbundspannungsverläufe

A.26 Versuch T8

Bewehrung

Rissbreitenmessungen

Durchbiegung und Stahllängsspannung

Querdehnungen (Bügel und Beton) im Stoßbereich

Stahllängsdehnungen

	σ_{s}		W _{m,Stoß} W _{k,Stoß}			VarK _{Stoß}			W _{m,außerhalb}			W _{k,außerhalb}			VarKaußerhalb			Stoßende			a _{m,außerhalb}		b VarKaußerh.		a _{m,Stoß}		VarK _{Stoß}			
	[N/mm ²]] [mm]		[mm]		[%]		[mm]		[mm]		1	[%]			[mm]			[cm]		[%]		[cm]		[9	6]				
																												\square		
		а	b	с-е	а	b	с-е	а	b	c-e	а	b	с-е	а	b	с-е	а	b	с-е	а	b	с-е	b	d	b	d	b	d	b	d
_	160	0,04	0,06	0,07	0,06	0,07	0,09	43%	26%	29%	0,07	0,10	0,13	0,09	0,15	0,19	46%	48%	48%	0,11	0,17	0,13						\square		
T1	320	0,08	0,13	0,14	0,10	0,16	0,21	34%	31%	53%	0,13	0,20	0,30	0,19	0,34	0,40	53%	79%	37%	0,26	0,40	0,43								
	400	0,09	0,16	0,16	0,12	0,20	0,24	33%	29%	53%	0,17	0,25	0,39	0,24	0,42	0,53	50%	74%	40%	0,31	0,55	0,68	19,1	18,8	27%	32%	21,4	16,4	17%	19%
	160	0,05	0,03	0,05	0,07	0,04	0,06	32%	60%	33%	0,05	0,07	0,10	0,08	0,10	0,15	58%	54%	51%	0,14	0,18	0,13						\vdash		
2	320	0,08	0,06	0,09	0,12	0,10	0,13	43%	65%	43%	0,11	0,23	0,20	0,18	0,30	0,28	69%	33%	40%	0,36	0,64	0,40	10.0	10.0	0.1.0/	000/		<u> </u>	070/	1001
_	400	0,10	0,08	0,11	0,14	0,13	0,15	42%	52%	40%	0,17	0,21	0,27	0,25	0,34	0,38	52%	60%	45%	0,30	0,70	0,52	16,2	16,2	31%	33%	14,0	14,1	27%	19%
_	160	0,05	0,06	0,08	0,06	0,07	0,10	39%	29%	28%	0,10	0,11	0,14	0,13	0,17	0,21	29%	53%	50%	0,09	0,12	0,24						\square		
3	320	0,06	0,10	0,17	0,07	0,14	0,21	29%	33%	28%	0,14	0,25	0,34	0,18	0,35	0,46	35%	43%	40%	0,26	0,22	0,62	10.1	10.0	000/	000/	177	17.0	050/	070/
_	400	0,08	0,14	0,21	0,11	0,19	0,27	44%	34%	28%	0,16	0,29	0,47	0,22	0,42	0,62	40%	4/%	34%	0,44	0,29	0,91	18,1	18,6	22%	29%	17,7	17,8	35%	27%
ŀ	160		0,05	0,06		0,07	0,08		27%	35%	0,04	0,12	0,11	0,05	0,16	0,15	30%	46%	43%	0,05	0,12	0,11						┝───┦		
4	320		0,08	0,12		0,11	0,17		42%	45%	0,08	0,22	0,20	0,10	0,31	0,28	36%	49%	49%	0,12	0,33	0,27		10.7	0.00/	000/			0.00/	000/
	400		0,10	0,14		0,16	0,21		56%	51%	0,11	0,27	0,26	0,15	0,38	0,36	45%	51%	4/%	0,15	0,42	0,39	11,5	13,7	32%	32%	11,7	12,7	26%	33%
₋┝	160	0,04	0,05	0,06		0,07	0,08	0.00/	57%	29%	0,08	0,14	0,14	0,12	0,20	0,19	49%	50%	45%	0,14	0,20	0,17						<u> </u>		
-	320	0,05	0,09	0,11	0,06	0,14	0,14	28%	66%	35%	0,14	0,24	0,28	0,22	0,38	0,40	65%	70%	53%	0,34	0,63	0,45	10.0	10.7	050/	410/	444	14.0	150/	0.40/
	400	0,06	0,11	0,14	0,07	0,17	0,20	24%	66%	47%	0,17	0,29	0,35	0,28	0,47	0,50	71%	70%	50%	0,47	0,82	0,60	16,2	13,7	35%	41%	14,1	14,2	15%	24%
₋⊦	160	0,06	0,08	0,08	0,09	0,12	0,11	38%	62%	40%	0,08	0,10	0,12	0,12	0,16	0,16	/1%	69%	3/%	0,20	0,31	0,27						┍──┦		
٥-	320	0,08	0,12	0,14	0,13	0,19	0,21	04%	72%	50%	0,17	0,17	0,26	0,29	0,25	0,35	/9%	04%	41%	0,42	0,75	0,70	15 F	17 4	200/	200/	10.0	16.0	400/	469/
-	400	0,08	0,15	0,16	0,12	0,25	0,25	40%	11% 50%	00%	0,20	0,21	0,32	0,33	0,31	0,45	13%	3/%	44%	0,53	0,09	0,92	15,5	17,4	30%	30%	10,8	10,2	40%	40%
	001	0,02	0,04	0,04	0,03	0,05	0,06	49%	53%	33%	0,06	0,08	0,08	0,08	0,11	0,11	43%	49%	50%	0,06	0,09	0,07								
-	320	0,03	0,05	0,08	0,05	0,08	0,11	45%	%00 66%	42%	0,10	0,13	0,16	0,17	0,23	0,26	97%	04% 45%	79%	0,12	0,11	0,16	12.2	11.6	20%	280/	10.0	0.0	200/	25%
-	400	0.04	0,00	0,10	0.00	0,10	0,14	C09/	400/	42 /0	0.05	0,14	0,19	0.07	0,19	0,52	E 00/	+J /0	670/	0.00	0,09	0,20	13,2	11,0	30 /8	20 /0	10,9	5,0	30 %	33 /8
	001	0,04	0,06	0,08	0,06	0,09	0,11	09%	49%	40%	0,05	0,13	0,13	0.15	0,20	0,22	52%	50%	0/% 600/	0,06	0.21	0,17						┍──┦		
0	320	0,05	0,09	0,10	0,09	0,14	0,21	/1%	52% 52%	42%	0,10	0,25	0,30	0,15	0,42	0,49	41%	12%	70%	0,15	0,30	0,55	15.0	14 1	EC9/	67%	15 7	171	1 1 0/	269/

Weiterentwicklung von Bemessungsund Konstruktionsregeln bei großen Stabdurchmessern (> \ophi 32 mm, B500)

Rissbreiten und zusätzlich erforderliche Oberflächenbewehrung

Jürgen Schnell

Martin Schäfer

1	RISSBREITEN UND ZUSÄTZLICH ERFORDERLICHE OBERFLÄCHENBEWEHRUNG	3
1.1	Einleitung	3
2	STAND DER TECHNIK	3
2.1	Was ist die Rissbreite?	3
2.2 2.2.1 2.2.2 2.2.3 2.2.4	Eurocode 2 für Deutschland Mindestbewehrung für die Begrenzung der Rissbreite Wirkungszone der Bewehrung Begrenzung der Rissbreite ohne direkte Berechnung Direkte Berechnung der Rissbreite	6 7 8 9
2.3	Sonderregeln bei großen Stabdurchmessern	10
3	EXPERIMENTELLE UNTERSUCHUNGEN	11
3.1	Versuchsprogramm	11
3.2 3.2.1	Versuchsaufbau Messtechnik	12 13
3.3 3.3.1 3.3.2	Geometrie der Versuchskörper Zugstäbe Serie 1 Zugplatten Serie 2 – 7	15 15 16
3.4 3.4.1 3.4.2	Versuchsdurchführung Zugversuche mit quasi-statischer Beanspruchung Zugversuche mit zyklischer Beanspruchung	20 20 23
3.5 3.5.1 3.5.2	Werkstoffeigenschaften Betoneigenschaften Materialeigenschaften	24 24 24
3.6 3.6.1 3.6.2	Versuchsergebnisse Rissabstand Rissbreite	27 27 28
4	INTERPRETATION DER VERSUCHSERGEBNISSE UND VORSCHLÄGE	35
4.1	Wirkungszone der Bewehrung	35
4.2	Rissabstand	35
4.3	Rissbreite	36
5	LITERATUR	38
6	ANHANG	40

1 Rissbreiten und zusätzlich erforderliche Oberflächenbewehrung

1.1 Einleitung

Im Stahlbetonbau ist es nicht das Ziel, Risse zu vermeiden. Die Stahlbetonbauweise "lebt" vom Aufreißen des Verbundwerkstoffes, sodass beide Partner, Bewehrungsstahl und Beton, ihren Beitrag zum Lastabtrag leisten können. Würde die Vermeidung von Rissen im Mittelpunkt des Stahlbetonbaus stehen, dann wären neben dem werkstoffgerechten Lastabtrag auch die Umlagerungen von Schnittgrößen in statisch unbestimmten Systemen und die Vorankündigung des Bauteilversagens nicht möglich. Um jedoch den Bewehrungsstahl vor äußeren Umwelteinflüssen zu schützen, die Gebrauchstauglichkeit eines Bauteils zu gewährleisten und nicht zuletzt die Ästhetik der Betonoberfläche aufrechtzuerhalten, ist die Begrenzung von Rissbreiten im Stahlbetonbau eine wichtige Aufgaben des Ingenieurs und Bestandteil der Bauteilbemessung. Aus baupraktischen Gesichtspunkten kann es sinnvoll sein, große Stabdurchmesser zu verwenden, unter anderem für hoch be-(12,56cm²), im Vergleich der Querschnittsflächen, 2¢28mm, 4¢20mm, 8¢14mm, 11¢12mm, 16¢10mm oder sogar 25¢8mm Bewehrungsstäbe ersetzen. Aufgrund der vereinfachten Bewehrungsführung können höhere Bewehrungsgrade bei gleichen Bauteilabmessungen ausgeführt werden, was zu höheren Tragfähigkeiten führt. Insgesamt ist durch die Verwendung von großen Stabdurchmessern eine Weiterentwicklung der Stahlbetonbauweise zu erwarten. Zur Einhaltung der Rissbreiten bestehen gemäß /1/ und /2/ die Möglichkeiten einer direkten Berechnung der Rissbreite als auch die Anwendung von Tabellenwerten und Konstruktionsregeln. Der Bewehrungsstabdurchmesser stellt in diesen Nachweisen einen zentralen Parameter dar. Die Nachweise wurden jedoch lediglich an kleineren Stabdurchmessern hergeleitet, sodass die Frage besteht, ob die Berechnungsgleichungen und Tabellen auch für große Durchmesser angewandt werden können. Ziel des Forschungsvorhabens ist die Überprüfung der Rissbreitengleichung (7.8) aus /1/ für große Stabdurchmesser sowie der zugehörigen Konstruktionsregeln. Weiter soll das Rissverhalten bei Verwendung von Oberflächenbewehrung untersucht werden. Es soll die Frage geklärt werden, ob ein Bewehrungsgehalt der Oberflächenbewehrung von 2% der externen Betonzugfläche, wie in /2/ gefordert, benötigt wird, um Risse gebrauchsgerecht zu verteilen und die Rissbreite zu begrenzen.

2 Stand der Technik

Risse sind im Stahlbetonbau nahezu unvermeidbar und sogar beabsichtigt. Um die Tragwirkung des Verbundbaustoffes Stahlbeton zu nutzen, sind Risse im Beton ein wichtiger Bestandteil und in den Bemessungsregeln des Grenzzustandes des Tragfähigkeit vorausgesetzt. Daher stellen Risse grundsätzlich im Stahlbetonbau keinen Mangel dar. Jedoch müssen Risse auf ein Maß begrenzt werden das zumindest die Dauerhaftigkeit des Bauwerks sicherstellt.

2.1 Was ist die Rissbreite?

Zunächst soll geklärt werden was bezugnehmend auf den Stand der Technik als die Breite eines Risses angesehen wird. In /3/ wird in Abschnitt 11.2.1 wie folgend auf die Rissbreite eingegangen:

"Die angegebenen Verfahren erlauben keine exakte Vorhersage und Begrenzung der Rissbreite. Die Rechenwerte der Rissbreite sind daher nur als Anhaltswerte zu sehen, deren gelegentliche geringfügige Überschreitung im Bauwerk nicht ausgeschlossen werden kann. Dies ist jedoch bei Beachtung der Regeln dieses Abschnitts im Allgemeinen unbedenklich. Die angegebenen Verfahren gestatten die Begrenzung und Berechnung der Rissbreite im Bereich nahe der im Verbund liegenden Bewehrung (d. h. innerhalb des Wirkungsbereichs der Bewehrung). Außerhalb dieses Bereichs können Risse mit größerer Breite auftreten".

In /1/ selbst fehlt ein solcher Hinweis zur Rissbreite, sodass jedoch in /4/ selbiger Absatz eingearbeitet wurde.

Festzuhalten ist, dass nach heutigen Normenstand die Frage, was der Rechenwert der Rissbreite gemäß /3/ bzw. die charakteristische Rissbreite aus /1/ ist, nicht eindeutig geklärt wird. In beiden Dokumenten wird lediglich dargelegt, dass der Rechenwert der Rissbreite als Anhaltswert zu sehen ist.

In /5/ wird die Rissbreite am Bauteil wie folgt gedeutet: "Als Rissbreite w wird der Abstand der Rissufer senkrecht zum Rissverlauf definiert; gemessen wird sie auf der Bauteiloberfläche. Die Rissbreite ist in der Regel keine konstante Größe, sie verändert sich entlang der Risslänge bzw. Risstiefe." Diese Beschreibung der Rissbreite am Bauteil ist weit verbreitet und oft diskutiert. Jedoch wird schon in der ersten Auflage von /6/ in dem Autorenbeitrag "Zum Nachweis der Rissbreitenbeschränkung gemäß DIN 1045-1" in Bild 1 – Definition des Rechenwertes der Rissbreite w_k, die Rissbreite anders dargestellt. Hier ist zu erkennen, dass zumindest die Rissbreite an der Betonoberfläche nicht der des Rechenwertes entspricht, sondern vielmehr mit einem über die Wirkungszone der Bewehrung abgeleiteten Mittelwert der Rissuferabstände übereinstimmt. Ähnliche Abbildungen des Rechenwertes der Rissbreite sind ebenfalls in /7/ (*Bild 4 und Bild 11*) zu finden.

Bild 3-1: Definition des Rechenwertes der Rissbreite wk aus /6/

In /3/ sowie in /1/ wird eine maximale Rissbreite w_{max} angegeben, bei deren rechnerischen Einhaltung mit Hilfe der Rissbreitenformeln die Dauerhaftigkeit des Bauwerks sichergestellt ist. Gedanklich soll also festgehalten werden, dass sowohl der Rechenwert der Rissbreite, die charakteristische Rissbreite als auch der diesem gegenüberzustellenden maximalen Rissbreiten nicht an der Betonoberfläche gemessen werden können. Es handelt sich hierbei stets um eine über die Wirkungszone der Bewehrung abgeleitete Rissbreite, die lediglich durch verpressen und ausbohren qualitativ am Bauwerk bestimmt werden könnte. Wie bereits oben beschrieben, sind jedoch auch gelegentliche geringfügige Überschreitungen der so ermittelten Rissbreite nicht ausgeschlossen, sondern vielmehr, in kleiner Anzahl, Voraussetzung für eine statistische Betrachtung der Rissbreite mit Über- als auch Unterschreitungen.

In /8/ wird beschrieben, dass die rechnerischen Rissbreiten, für w < 0,5mm, in Abhängigkeit der mittleren Verbundspannung als Fraktilwerte bestimmt werden können. So soll für gerippten Betonstahl mit $\tau_{sm}=2,25 \cdot f_{ctm}$ der Mittelwert der Rissbreite (50%-Fraktil) und für $\tau_{sk}=1,8 \cdot f_{ctm}$ das 75%-Fraktil berechnet werden können. Hieraus folgt, dass der charakteristische Wert der Rissbreite nach /3/ und /1/, welche mit einer mittleren Verbundspannung von 1,8 $\cdot f_{ctm}$ hergeleitet wird, als 75%-Fraktil gedeutet werden kann. An welcher Rissstelle diese Breite auftritt, wird auch in /8/ nicht beschrieben.

In /9/ werden ebenfalls spezifische Zahlenwerte angegeben, die den Gleichungen der Rissbreiten nach /3/ und /1/ unterliegen und damit als bedingungsgemäß angesehen werden sollen. Hier wird der Begriff der Überschreitungsmenge eingeführt, welcher abhängig von der charakteristischen Rissbreite ist. So werden für die rechnerisch ermittelte Rissbreite von 0,4mm eine Überschreitungsmenge von 5% angeführt. Je kleiner die berechneten Rissbreiten sind, desto größer können die Überschreitungsmengen ausfallen, was grundlegend in /10/ beschrieben ist.

Im Folgenden sind die gemäß /9/ aufgeführten Überschreitungsmengen für die rechnerischen Rissbreiten w_k dargestellt:

 $w_k = 0,4mm \rightarrow maximal 5\%$ Überschreitungsmenge

 $w_k = 0.3mm \rightarrow maximal \; 10\% \; \ddot{U} berschreitungsmenge$

 $w_k = 0,2mm \rightarrow maximal \; 20\% \; \ddot{U} berschreitungsmenge$

Dies bedeutet, dass bei einer berechneten Rissbreite von 0,4mm 5% der gemessen Rissbreiten größer sein dürfen, ohne direkt als Mangel bewertet zu werden. Mathematisch ausgedrückt spiegelt der berechnete Wert der Rissbreite für eine Größe von 0,4mm also das 95%-Fraktil der im Bauteil vorhandenen Rissbreiten wider. Mit dieser Überlegung werden die dargestellten Überschreitungsmengen wie folgt umgeschrieben sowie durch die Rissbreite von 0,1mm erweitert. Dieser Zusammenhang zwischen den Fraktilwerten und den berechneten Rissbreiten wird ebenfalls in /9/ gezeigt.

 $w_k = 0,4mm \rightarrow 95\%\text{-}Fraktil$

 $w_k = 0.3mm \rightarrow 90\%$ Fraktil

 $w_k = 0,2mm \rightarrow 80\% \; Fraktil$

 $w_k = 0,1mm \rightarrow 70\% \; Fraktil$

Über die Größe des Konfidenzintervalls dieser Fraktilwerte wird keine Aussage getroffen. Wird jedoch das gemäß /11/ übliche Konfidenzintervall von 75% angesetzt, könnte der Nachweis über die Einhaltung der oben dargestellten Rissbreiten wie folgt geführt werden.

$$W_{k \text{ test}} = m_{x} + k_{t} \cdot s_{x} \leq W_{k}$$

(3.1)

Der Mittelwert m_x sowie die Standartabweichung s_x muss über die am Bauwerk gemessenen Rissbreiten bestimmt werden. Durch den Faktor k_t gemäß /12/ werden die Messwerte in Abhängigkeit der Anzahl der Rissbreiten und dem Konfidenzintervall auf den geforderten Fraktilwert gehoben. Mathematisch betrachtet müssen demnach auch sehr große Rissbreiten, bei sehr kleinen Erscheinungswahrscheinlichkeiten, auftreten.

In /9/ wird weiter beschrieben, dass die Dauerhaftigkeit eines Bauteils welches Risse zeigt, die orthogonal zur Bewehrung verlaufen, unbeeinflusst bleibt, solange die Rissbreiten an der Bauteiloberfläche w_{voh} kleine 0,5mm sind. Hiermit kann dieser Rissbreitenwert als Grenzwert für übliche Bauteile mit Betonstahlbewehrung angesehen werden. Ist mit Bewehrungskorrosion verursacht durch Chloride zu rechnen, können jedoch wesentlich kleinere Risse Einfluss auf die Dauerhaftigkeit des Bauteiles haben (vgl. /9/).

Folgend sind beispielhaft die rechnerische Rissbreite w_k gemäß /1/ und /2/, der Mittelwert der Rissbreite einer Versuchsreihe und der zugehörige Fraktilwert dargestellt. Weiter sind in Bild 3-2 die oben beschriebenen Zusammenhänge zwischen der charakteristischen Rissbreite und dem veränderlichen Fraktilwert der gemessenen Rissbreite, aufgeführt.

Bild 3-2: Fiktive Auswertung einer Rissbreitenmessung

Es sollte festgehalten werden, dass ein Vergleich zwischen rechnerischen Rissbreiten und am Bauwerk gemessenen Rissbreiten schwierig bleibt, da dann ein fiktiver Rechenwert und ein realer Messwert verglichen werden müssen.

Alle bisherigen Rissbreitenformeln wurden jedoch zumindest an Versuchsergebnissen kalibriert. Es muss davon ausgegangen werden, dass ein Vergleich der rechnerischen Rissbreiten mit Messwerten möglich ist. Zwar fundiert jede Rissbreitenherleitung auf Dehnungszuständen in der Achse des Bewehrungsstabes, leider fehlt jedoch in vielen Veröffentlichungen die Aussage zur Messstelle der Rissbreite. Es ist davon auszugehen, dass die Rissbreiten stets an der Bauteiloberfläche gemessen wurden. Wahrscheinlich ist auch, dass die Messstellen direkt über Bewehrungsstäben angesetzt wurden. Mit diesen Annahmen, kann dann auch der Rechenwert der Rissbreite mit der Bauteilrissbreite an der Betonoberfläche verglichen werden. Diese Vorgehensweise wird in /9/ für die praktische Messung und Auswertung von Rissbreiten postuliert. Es wird ein detailliertes Verfahren dargestellt, wie Rissbreiten am Bauwerk zu messen sind und wie diese ausgewertet werden sollen. Dort geht ebenfalls der ungleichmäßige Rissbreitenverlauf auf der Betonoberseite in Rissrichtung ein, sodass nicht ein Messwert pro Riss ausgewertet wird, sondern ein Wert welcher aus mehreren Messungen eines Risses jeweils im Abstand von amess bestimmt wurde.

Eine Rissbreitenmessung macht nur Sinn, wenn die aktuelle vorherrschende Beanspruchungshöhe, die Lage der Bewehrung und vor allem die Wirkungsrichtung der Beanspruchung bekannt sind. Wichtig ist jedoch stets, dass solche Ergebnisse mit Ingenieurverstand bewertet werden.

2.2 Eurocode 2 für Deutschland

Den aktuellen Stand der Technik bildet /1/ mit den dazugehörigen nationalen Anhängen. In Deutschland wurde /1/ am 1. Juli 2012 bauaufsichtlich eingeführt. Für Deutschland sind gesonderte Regelungen zur Rissbreitenberechnung im nationalen Anhang /2/ aufgeführt, sodass die Berechnungen unter Berücksichtigung dieser landesspezifischen Abweichungen durchgeführt werden. Für den Grenzzustand der Gebrauchstauglichkeit werden maximale Rissbreiten in Abhängigkeit der Expositionsklasse angegeben. Diese befinden sich in einem Bereich von 0,2 – 0,4mm (siehe Tabelle 3-1). Weiter sind Formeln zur Berechnungen der erforderlichen Mindestbewehrung zur Begrenzung der Rissbreite enthalten. Es besteht ebenfalls die Möglichkeit, Rissbreiten ohne direkte Berechnung zu begrenzen. Dies erfolgt, jeweils in Abhängigkeit der Stahlspannung, über die Berechnung eines Grenzdurchmessers oder durch Mindeststababstände der Bewehrungsstäbe, was im Abschnitt 7.3.3 von /1/ gezeigt wird. Die Rissbreiten können jedoch gemäß Abschnitt 7.3.4 aus /1/ auch berechnet werden. Durch Einbeziehung des nationalen Anhangs für Deutschland /2/ ergeben sich identische Formeln zur Berechnung der charakteristischen Rissbreiten, wie sie bereits in /3/ aufgeführt wurden. Bei der Kombination aus Zwang- und Lastbeanspruchung dürfen Rissbreiten ebenfalls mit den gegebenen Formeln berechnet werden, jedoch ist in diesem Fall die Dehnung aus Lastbeanspruchung noch um den Wert des Zwangs zu vergrößern. Risse infolge von Schwinden oder anderen chemischen Reaktionen sind nicht geregelt. Die Begrenzung von Schubrissen erfolgt gemäß /2/ über die angegebenen Konstruktions- und Bewehrungsregeln. Der Entwurf /13/ sieht für die Berechnung der Rissbreiten keine Änderungen vor.

2.2.1 Mindestbewehrung für die Begrenzung der Rissbreite

Im Abschnitt 7.3 "Begrenzung der Rissbreiten" werden in /1/ die Regelungen zur Rissbreite aufgeführt. Zunächst werden in Tabelle 7.1DE Grenzwerte w_{max} der rechnerischen Rissbreite w_k festgelegt (siehe Tabelle 3-1).

Expositions klasse	- Stahlbeton und Vorspannung ohne Verbund	Vorspannung mit nachträglichem Verbund	Vorspann sofortigem	ung mit Verbund		
	m	it Einwirkungskomb	oination			
	quasi-ständig	häufig	häufig	selten		
X0, XC1	0,4 ^a	0,2	0,2			
XC2 – XC4	0,3	0,2 ^{b, c}	0,2 ^b	_		
XS1 – XS3			Dekom-	0,2		
XD1, XD2, XD3 ^d			pression			
^a Bei den Expositionsklassen X0 und XC1 hat die Rissbreite keinen Einfluss auf die Dauerhaftigkeit und dieser Grenzwert wird i. Allg. zur Wahrung eines akzeptablen Erscheinungsbildes gesetzt. Fehlen entsprechende Anforderungen an das Erscheinungsbild, darf dieser Grenzwert erhöht werden.						
^b Zusätzlich Einwirkung	^b Zusätzlich ist der Nachweis der Dekompression unter der quasi-ständigen Einwirkungskombination zu führen.					
^c Wenn der Zulassunge	Korrosionsschutz ander n der Spannverfahren), da	weitig sichergestellt wird arf der Dekompressionsna	d (Hinweise hie chweis entfallen.	rzu in den		
d Beachte 7.	3.1 (7).					

Tabelle 3-1: Rechenwerte für wmax in [mm] aus /2/

Weiter wird im Abschnitt 7.3.2 aus /1/ eine Mindestbewehrung für die Begrenzung der Rissbreite vorgeschlagen, welche aus dem Gleichgewicht in der Betonzugzone unmittelbar vor der Rissbildung bestimmt wird.

$$\boldsymbol{A}_{s,min} \cdot \boldsymbol{\sigma}_{s} = \boldsymbol{k}_{c} \cdot \boldsymbol{k} \cdot \boldsymbol{f}_{ct,eff} \cdot \boldsymbol{A}_{ct}$$

(3.2)

Hierbei ist A_{s,min} die Mindestquerschnittfläche der Bewehrung innerhalb der Zugzone und σ_s die maximal zulässige Spannung in der Bewehrung. Der Faktor k_c berücksichtigt den Einfluss der Spannungsverteilung innerhalb des Querschnittes vor der Erstrissbildung sowie der Änderung des inneren Hebelarmes nach der Rissbildung. Für reinen Zug beträgt der Faktor k_c = 1,0 und für reine Biegung ist k_c = 0,4. Für Biegung mit Normalkraft und für Gurte von Hohlkästen- oder T-Querschnitten werden weitere Gleichungen zur Verfügung gestellt, welche unter anderem die Betonspannung in Höhe der Schwerlinie des Querschnittes und die Normalkraft als Druck- oder Zugkraft berücksichtigen. Mit dem Beiwert k sollen weitere risskraftreduzierende Einflüsse wie die nichtlinear verteilten Betonzugspannungen berücksichtigt werden. Für Zugspannungen infolge inneren Zwang (z.B. Abfließen der Hydratationswärme) werden Werte zwischen 0,5 und 0,8 für Querschnittshöhe von 300mm bis 800mm angegeben. Werden jedoch Zugspannungen infolge äußerem Zwang eingetragen, so ist der Beiwert k mit 1,0 anzusetzen. Die Betonzugfestigkeit f_{ct,eff} soll hier als effektive Zugfestigkeit angesehen werden, welche zum erwarteten Zeitpunkt der Rissbildung vorherrscht. Diese darf gemäß /1/ für eine frühe Rissbildung innerhalb der ersten 3 bis 5 Tagen mit der Hälfte der mittleren 28 Tage Zugfestigkeit $(0,5\cdot f_{ctm})$ angesetzt werden. Aktuelle Forschungsergebnisse zeigen, dass diese pauschale Annahme der Betonzugfestigkeit veraltet ist. So werden in /14/ Werte zwischen 0,65·f_{ctm} und 0,85·f_{ctm} für die Betonzugfestigkeit für den frühen Zwang aus Abfließen der Hydratationswärme angegeben. Ist nicht sichergestellt das Risse innerhalb der ersten 28 Tagen auftreten, so soll als Mindestbetonzugfestigkeit f_{ct,eff} = 3 N/mm² eingesetzt werden. A_{ct} ist die Fläche der Betonzugzone. Sie wird unter der zur Erstrissbildung führenden Eiwirkungskombination im ungerissenen Zustand berechnet vgl. /1/ und /2/.

2.2.2 Wirkungszone der Bewehrung

Bei dicken Bauteilen darf die Mindestbewehrung A_{s,min} lediglich für die effektive Randzone A_{c,eff} ermittelt werden. Die effektive Randzone (auch Wirkungsbereich der Bewehrung genannt), wird mit Hilfe der Höhe h_{c.ef} bestimmt, welche Abhängig von dem Bauteil sowie der Schwerachse der Bewehrung ist. Hierzu wird auf die Bilder 7.1DE a) bis d) in /1/ verwiesen.

2.2.3 Begrenzung der Rissbreite ohne direkte Berechnung

Im Kapitel 7.3.3 von /1/ wird die Begrenzung der Rissbreite ohne direkte Berechnung dargestellt. Dies wurde für die Vereinfachung der Rissbreitenbegrenzung vorgenommen und spiegelt die direkte Berechnung der Rissbreite im Kapitel 7.3.4 in tabellarischer Form wider. In *Tabelle 7.2DE – Grenzdurchmesser bei Betonstählen* ϕ_s^* aus /2/ sind unter den Annahmen der Einzelrissbildung im niedrigen Bauteile mit einer Betonzugfestigkeit von $f_{ct,eff} = 2,9 \text{ N/mm}^2$ und einem E-Modul der Bewehrung $E_s = 200.000 \text{N/mm}^2$ bei langzeitiger Beanspruchung Stabdurchmesser für verschiedene Stahlspannungs-Rissbreitenkombinationen angegeben.

	Grenzdurchmesser bei Betonstählen ø₅* ^ª mm					
$\sigma_{s}{}^{b}$		w _k				
N/mm²	0,4 mm	0,3 mm	0,2 mm			
160	54	41	27			
200	35	26	17			
240	24	18	12			
280	18	13	9			
320	14	10	7			
360	11	8	5			
400	9	7	4			
450	7	5	3			
a Die Werte dieser	a Die Werte dieser Tabelle basieren auf den folgenden Annahmen:					
Grenzwerte der Gleichungen (7.9) und (7.11) mit $f_{ct,eff}$ = 2,9 N/mm ² und E_s = 200 000 N/mm ² :						

Tabelle 3-2: Grenzdurchmesser bei Betonstählen ϕ_s^* [mm] aus /2/ Tabelle 7.2DE

$$\sigma_{\rm S} = \sqrt{w_{\rm k} \, \frac{3,48 \cdot 10^6}{\phi_{\rm S}^*}}$$

^b unter der maßgebenden Einwirkungskombination

Diese Grenzdurchmesser müssen für andere Randbedingungen als oben dargestellt angepasst / modifiziert werden, sodass der gewählte Bewehrungsdurchmesser kleiner als ein modifizierter Grenzdurchmesser ϕ_s ist. Für Biegezwangbeanspruchung ist der Grenzdurchmesser wie folgt zu modifizieren.

$$\phi_{s} = \phi_{s}^{\cdot} \cdot \frac{k_{c} \cdot k \cdot h_{cr}}{4(h-d)} \cdot \frac{f_{ct,eff}}{2,9} \ge \phi_{s}^{\cdot} \cdot \frac{f_{ct,eff}}{2,9}$$
(3.3)

Hierbei ist h_{cr} die Höhe der Zugzone vor der Rissbildung, h die Gesamthöhe des Querschnitts und d die statische Nutzhöhe bis zum Schwerpunkt der außenliegenden Bewehrung. Bei zentrischen Zugzwang ist der Grenzdurchmesser wie folgt zu modifizieren.

$$\phi_{s} = \phi_{s}^{\cdot} \cdot \frac{k_{c} \cdot k \cdot h_{cr}}{8(h-d)} \cdot \frac{f_{ct,eff}}{2,9} \ge \phi_{s}^{\cdot} \cdot \frac{f_{ct,eff}}{2,9}$$
(3.4)

Unter Lastbeanspruchungen ist folgende Modifizierung vorzunehmen.

$$\phi_{s} = \phi_{s}^{\cdot} \cdot \frac{\sigma_{s} \cdot A_{s}}{4(h-d) \cdot b \cdot 2,9} \ge \phi_{s}^{\cdot} \cdot \frac{f_{ct,eff}}{2,9}$$
(3.5)

Weiter werden in /1/ in *Tabelle 7.3N – Höchstwerte der Stababstände zur Begrenzung der Rissbreiten* angegeben. Unter der Annahme, dass die Wirkungszone der Bewehrung auf 2,5·(h-d) beschränkt ist, wurde diese Tabelle aufgestellt. Eine Modifikation des Stababstandes wird nach /1/ nicht gefordert.

Stahlspannung ²	Höchstwerte der Stababstände [mm]					
[N/mm²]	w _k =0,4 mm	<i>w</i> _k =0,3 mm	w _k =0,2 mm			
160	300	300	200			
200	300	250	150			
240	250	200	100			
280	200	150	50			
320	150	100				
360	100	50	_			

Tabelle 3-3: Höchstwerte der Stababstände zur Begrenzung der Rissbreite aus /1/ Tabelle 7.3N

2.2.4 Direkte Berechnung der Rissbreite

Im Abschnitt 7.3.4 – Berechnung der Rissbreite aus /1/, werden Gleichungen angegeben mit deren Hilfe die Rissbreiten direkt berechnet werden können. Hier wird die charakteristische Rissbreite w_k als Produkt der Differenz zwischen der mittleren Stahl- ε_{sm} und Betondehnung ε_{cm} sowie des maximalen Rissabstandes s_{r,max} berechnet.

$$W_{k} = S_{r,max} \cdot \left(\varepsilon_{sm} - \varepsilon_{cm}\right)$$
(3.6)

Die Größe der Dehnungsdifferenz darf wie folgt bestimmt werden.

$$\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_{s} - k_{t} \cdot \frac{f_{ct,eff}}{\rho_{p,eff}} \cdot \left(1 + \alpha_{e} \cdot \rho_{p,eff}\right)}{E_{s}} \ge 0, 6 \cdot \frac{\sigma_{s}}{E_{s}} \varepsilon$$
(3.7)

Hierbei ist σ_s die Spannung in der rissbreitenbeschränkenden Zugbewehrung unter der Annahme des gerissenen Querschnitts, α_e ist das Verhältnis zwischen dem E-Moduli der Bewehrung E_s und des Betons E_c, $\rho_{p,eff}$ stellt den effektiven Bewehrungsgrad dar und k_t ist ein Faktor, dessen Größe von der Dauer der Lasteinwirkung abhängt. Für langfristige Lasteinwirkung wird k_t mit 0,4 und für kurzzeitige Lasteinwirkung mit 0,6 angegeben (vgl. /1/). Der maximale Rissabstand s_{r,max} darf bei Stäben in der Zugzone, die einen geringen Abstand untereinander aufweisen, wie folgt bestimmt werden.

$$s_{r,max} = \frac{\phi}{3,6 \cdot \rho_{p,eff}} \le \frac{\sigma_s \cdot \phi}{3,6 \cdot f_{ct,eff}}$$
(3.8)

Hierbei wird über den Abstand c zwischen der Betonoberfläche und dem Bewehrungsstab sowie dem Stabdurchmesser ϕ ein geringer Abstand definiert.

$$a \le 5 \cdot \left(c + \frac{\phi}{2}\right) \tag{3.9}$$

Weisen die Bewehrungsstäbe in der Zugzone einen größeren Abstand untereinander auf, so ist für die Berechnung des maximalen Rissabstandes die 1,3-fache Zugzonenhöhe einzusetzen.

$$s_{r,max} = 1,3(h-x)$$
 (3.10)

Werden verschiedene Stabdurchmesser in der Zugzone verwendet, so ist ein Ersatzdurchmesser ϕ_{eq} zu bestimmen, der als Eingangswert in den oben dargestellten Gleichungen verwendet wird.

$$\phi_{eq} = \frac{n_1 \cdot \phi_1^2 + n_2 \cdot \phi_2^2}{n_1 \cdot \phi_1 + n_2 \cdot \phi_2}$$
(3.11)

2.3 Sonderregeln bei großen Stabdurchmessern

In /15/ wurde lediglich Betonstahl bis zu einem Durchmesser $\phi = 28$ mm geregelt. Im Folgedokument /16/ wurden dagegen schon Stäbe mit einem Durchmesser bis 40mm aufgenommen. Die Bemessungs- und Konstruktionsregeln dieser großen Bewehrungsstäbe wurden in den bauaufsichtlichen Zulassungen (z.B.: /17/) festgelegt. Durch die Überarbeitung von /18/ und /19/ für Betonstähle und die hiermit verbundene Aufnahme der Stabdurchmesser 32mm bis 40mm wurden die Bemessungs- und Konstruktionsregeln, falls abweichend, in /1/ Abschnitt 8.8 "Zusätzliche Regeln bei großen Stabdurchmessern" aufgenommen. Im Folgenden sind diese Zusatzregeln für große Stabdurchmesser aus /1/ und /2/, welche sich auf die Rissbreitenbegrenzung auswirken, aufgeführt.

Aufgrund fehlender Erfahrung wurde der Einsatzbereich auf die Betonfestigkeitsklassen C20/25 bis C80/95 begrenzt. Bei Verwendung großer Stabdurchmesser darf die Rissbreite sowohl durch Berechnung als auch durch Verwendung einer Oberflächenbewehrung begrenzt werden. Eine Oberflächenbewehrung ist ab einem Stabdurchmesser ϕ > 32mm oder auch bei Stabbündeln ab einem Vergleichsdurchmesser ϕ_n > 32mm erforderlich. Die Oberflächenbewehrung darf nicht kleiner als 0,02·Act,ext parallel und orthogonal zur Zugbewehrung sein. Der Stabdurchmesser der Oberflächenbewehrung ist auf $\phi \leq 10$ mm begrenzt und muss außerhalb der Bügel angeordnet werden. Sowohl Längs- als auch Querstäbe dürfen für die statisch erforderliche Biege- oder Querkraftbewehrung angesetzt werden. Da die Wirkungszone der großen Stabdurchmesser auf einen nahe der Bewehrung liegenden Bereich begrenzt ist, muss die Oberflächenbewehrung maximal 600mm weitergeführt werden. Falls außerhalb dieses Bereiches Zugspannungen vorhanden sind, muss gemäß /1/ die erforderliche rissbreitenbegrenzende Bewehrung eingelegt werden. Somit ist der Bereich der Oberflächenbewehrung eines großen Stabdurchmessers in einer breiten Betonplatte maximal auf 1200mm begrenzt und wird durch die "normale" Rissbreitenbewehrung abgelöst. Das Minimum des Oberflächenbewehrungsbereiches wird mit 300mm oberhalb des letzten großen Bewehrungsstabes in Druckrandrichtung angegeben. Dies wird in /4/ mit einer ausreichenden Umfassung der Bewehrung begründet. Zur Sicherstellung des Verbundes muss eine zusätzliche Bügelbewehrung angeordnet werden, deren Querschnittsfläche 10% der einfassenden Querschnittsfläche großer Stabdurchmesser entspricht. Die Querstäbe der Oberflächenbewehrung dürfen als Verbundsicherungsbewehrung herangezogen werden. Werden zwei große Bewehrungsstäbe von einer Reihe Querstäbe / Bügel gehalten, so muss diese der Querschnittsfläche von 2,5cm²/m entsprechen.

$$a_{sw} = 10\% \cdot 2 \cdot A_{s,\phi40} = 0, 1 \cdot 2 \cdot 12,56 \text{cm}^2 = 2,5 \frac{\text{cm}^2}{\text{m}}$$
(3.12)

Somit können zwei große Bewehrungsstäbe ϕ 40mm durch Querstäbe ϕ 6-200mm (zweischnittig, 2,8cm²/m) gehalten werden.

Die Änderung der Berechnung des Bemessungswertes der Verbundfestigkeit hat keine direkten Auswirkungen auf die Rissbreitenberechnung, wird jedoch als erwähnenswert erachtet. Diese wird im Abschnitt 8.4.2 in /1/ beschrieben. Demnach wird die Verbundfestigkeit zur Verankerung von Längsbewehrung um den Faktor η_2 bei großen Bewehrungsstäben $\phi > 32mm$ herabgesetzt. Dieses Vorgehen wird damit begründet, dass der Widerstand gegen Spalten des Betons mit zunehmendem Bewehrungsdurchmesser abnimmt (vgl. /4/).

3 Experimentelle Untersuchungen

3.1 Versuchsprogramm

Um eine Eindeutigkeit der Versuchsbezeichnung zu schaffen, wurde folgende Bezeichnungsformel der Versuche verwendet.

RB.1.40.C30/37.0.ko_V2

Bild 3-3: Aufbau der Versuchsbezeichnung

Das Versuchsprogramm wurde aufgestellt, um den Einfluss des Bewehrungsdurchmessers und der Oberflächenbewehrung auf die Rissbreiten zu bestimmen. Weiter wurde die Betonfestigkeit für Normalbeton, die Belastungsdauer und der Bügelbewehrungsgehalt berücksichtigt. Das Versuchsprogramm ist in Tabelle 3-4 dargestellt.

Tabelle 3-4: Versuchsprogramm und Parameterkombinationen

Versuchsbezeichnung	Querschnittsserie	Stabdurchmesser	Betondruckfestigkeits- klasse	Oberflächenbewehrung [%]	Beanspruchung ko=kontinuierlich zy=zyklisch	Anzahl der Versuche
RB.1.10.C30/37.0.ko	1	10	C30/37	0	ko	3
RB.1.10.C50/60.0.ko	1	10	C50/60	0	ko	1
RB.1.14.C30/37.0.ko	1	14	C30/37	0	ko	3
RB.1.14.C50/60.0.ko	1	14	C50/60	0	ko	1
RB.1.20.C30/37.0.ko	1	20	C30/37	0	ko	6
RB.1.25.C30/37.0.ko	1	25	C30/37	0	ko	3
RB.1.28.C30/37.0.ko	1	28	C30/37	0	ko	3
RB.1.40.C30/37.0.ko	1	40	C30/37	0	ko	3
RB.1.40.C50/60.0.ko	1	40	C50/60	0	ko	1
RB.1.40.C30/37.0.zy	1	40	C30/37	0	zy	3
RB.1.50.C30/37.0.ko	1	50	C30/37	0	ko	3
RB.1.50.C50/60.0.ko	1	50	C50/60	0	ko	1

RB.1.50.C30/37.0.zy	1	50	C30/37	0	zy	3
RB.2.40.C30/37.0.ko	2	40	C30/37	0	ko	3
RB.2.40.C50/60.0.ko	2	40	C50/60	0	ko	1
RB.3.40.C30/37.1.ko	3	40	C30/37	1	ko	3
RB.3.40.C50/60.1.ko	3	40	C50/60	1	ko	1
RB.4.40.C30/37.1.ko	4	40	C30/37	1	ko	3
RB.4.40.C50/60.1.ko	4	40	C50/60	1	ko	1
RB.5.40.C30/37.2.ko	5	40	C30/37	2	ko	3
RB.5.40.C50/60.2.ko	5	40	C50/60	2	ko	1
RB.6.40.C30/37.2.ko	6	40	C30/37	2	ko	3
RB.6.40.C50/60.2.ko	6	40	C50/60	2	ko	1
RB.7.40.C30/37.1.ko	7	40	C30/37	1	ko	3
RB.7.40.C50/60.1.ko	7	40	C50/60	1	ko	1

3.2 Versuchsaufbau

Die Versuche wurden in einem neu konstruierten Reißrahmen durchgeführt, welcher die Versuchskörper mit einer maximalen Zugkraft von 2.300kN beanspruchen kann. Der Reißrahmen besteht aus jeweils zwei Lisenen und zwei Traversen. An beiden Verbindungspunkten einer Traverse mit den Lisenen wurden zwei 1500kN Hohlkolbenpressen eingebaut, die mit Hilfe einer Pumpe, weggesteuert beansprucht werden können. Um Durchbiegungen aus Eigenlast auszuschließen, wurde unter dem Versuchskörper ein Gleittisch angeordnet, auf dem eine fast reibungsfreie Lagerung möglich ist. Der Reißrahmen ist insgesamt 6m lang und 1,85m breit, sodass Versuchskörper mit einer Länge von bis zu 4m und einer maximalen Breite von 1,3m mit Zugbelastungen beansprucht werden können. Die Lasteinleitung erfolgt bei den Versuchen der Serie 1 mithilfe von Spannkeilen und bei den Serien 2 – 7 mit einer wiederverwendbaren Lasteinleitungskonstruktion. In Bild 3-4 und Bild 3-5 ist der Reißrahmen mit jeweils einem Versuchskörper der Serie 1 und 2 zeichnerisch dargestellt. In Bild 3-6 ist der Reißrahmen mit Steuereinheit abgelichtet.

Bild 3-4: Reißrahmen mit Versuchskörper Serie 1

Bild 3-5: Reißrahmen mit Versuchskörper der Serien 2 – 6

Bild 3-6: Versuchsstand mit eingebautem Versuchskörper, Serie 6

3.2.1 Messtechnik

Zur Steuerung des Reißrahmens wurde an beide Hohlkolbenpressen jeweils ein Wegaufnehmer angeschlossen, welcher den Kolbenweg erfasst. Alle Versuche unter quasi-statischer Beanspruchung wurden mit einer Geschwindigkeit von 0,3mm/min durchgeführt. Eine jeweils auf die Maximallast ausgelegte Kraftmessdose, mit der die Beanspruchungshöhe gemessen werden konnte, wurde zwischen Lasteinleitung und Versuchskörper eingebracht. Zugehörig zur Beanspruchungshöhe wurde die Gesamtlängenänderung des Versuchskörpers durch Wegaufnehmer, welche auf den Längsseiten des Versuchskörpers angebracht waren, gemessen. Zusätzlich wurden Dehnungsmessstreifen auf die Bewehrungsstäben appliziert, mit deren Hilfe die Stahldehnungen im Riss bestimmt werden konnten.

Zur Messung der Rissbreite auf der Betonoberfläche wurde ein digitales Mikroskop (siehe Bild 3-8) benutzt, welches Bilder mit einer Auflösung von 1600 x 1200 Pixel ermöglicht. Es wurden jeweils Abbilder des Risses in Achse der Bewehrungsstäbe (Serie 1 + 7) und im Abstand von 100mm (Serie 2 - 6) mit den Abmessungen von 2,4 x 2mm angefertigt. In Bild 3-7 sind die Aufnahmestellen der Rissbilder (Serie 2 – 6) dargestellt.

Bild 3-7: Messstellen der Serie 2 - 6

Durch die Verwendung des digitalen Mikroskops konnten Bilder des Rissbereiches in 84-facher Vergrößerung aufgenommen werden (siehe Bild 3-9). Mit Hilfe der Software /20/ wurden die Aufnahmen zu einen späteren Zeitpunkt am PC vermessen. Die Messgenauigkeit der Aufnahmen lag bei einer Pixelabmessung mit 0,002mm, was die Genauigkeit einer Rissbreitenmessung mit Hilfe von Risslupen oder Messkarten um ein Vielfaches übersteigt.

Bild 3-8: Digitales Mikroskop

Bild 3-9: Aufnahme eines Risses, 84-fache Vergrößerung

3.3 Geometrie der Versuchskörper

3.3.1 Zugstäbe Serie 1

Es wurden Zugstäbe mit jeweils einem mittig eingebauten Bewehrungsstab untersucht. Die Abmessungen des Querschnittes wurden aus der Vorüberlegung zur Betondeckung bei großen Stäben getroffen. So muss zurzeit beim Einsatz großer Bewehrungsstäbe nach /1/ neben der statisch erforderlichen Bügelbewehrung zusätzlich eine Bügelbewehrung zur Sicherstellung des Verbundes als auch eine Oberflächenbewehrung kreuzweise eingelegt werden. Dem geschuldet wurde eine Betondeckung der dicken Bewehrungsstäbe von $1,5.\phi$ (1,5.40 = 60mm) als baupraktisch angesehen und ausgeführt. Zur besseren Vergleichbarkeit der Versuchsergebnisse wurde der sich einstellende Bewehrungsgehalt von ca. 5% in allen Versuchen der Serie 1 beibehalten. Die untersuchten Querschnitte der Serie 1 sind in Bild 3-10 dargestellt.

Bild 3-10: Querschnittsgeometrie der Versuchskörperserie 1

Die Länge der Versuchskörper betrug in allen Versuchen mit quasi-statischer Beanspruchungsgeschwindigkeit 4m. In Längsmitte wurde eine Folie, zur Indizierung des ersten Risses eingearbeitet. Die Bewehrungsstäbe ragten, zur Verankerung, an beiden Enden 30cm aus den Betonkörpern.

3.3.2 Zugplatten Serie 2 – 7

Mit den Versuchen der Serie 2 soll das Rissverhalten von Stahlbetonplatten, welche nur mit großen Bewehrungsstäben ϕ = 40mm bewehrt sind, untersucht werden. Die Bewehrungsanordnung ist in Bild 3-11 dargestellt. Der Randabstand der Bewehrung wird wie in Serie 1 mit 60mm beibehalten.

Bild 3-11: Querschnittsgeometrie der Serie 2

Der Achsabstand zwischen beiden großen Bewehrungsstäben betrug in den Versuchen (Serie 2 – 6) 400mm. In Serie 7 wurde der Achsabstand auf 120mm variiert. Die Versuchskörper der Serien 2 - 6 unter quasi-statischer Beanspruchung besitzen wie in der Serie 1 eine Körperlänge von 4m und ebenfalls eine Rissfolie zur Indizierung des Erstrisses in der Mitte des Versuchskörpers. Die Versuchskörper der Serie 7 wurden wegen einer erweiterten Lasteinleitungskonstruktion mit einer Länge von 3,52m angefertigt. Um die Zugkonstruktionen an die Versuchskörper anzuschweißen, wurden die großen Bewehrungsstäbe mit einem Überstand von 15cm eingebracht. Die dünnen Bewehrungsstäbe der Oberflächenbewehrung weisen bei den Serien 3 – 7 einen Überstand von 7cm auf.

Die Oberflächenbewehrung zur Begrenzung der Rissbreite wird in den Serien 3 - 7 untersucht. Diese soll gemäß /1/ und /2/ 2% der unter Zugspannungen stehenden externen Betonfläche A_{ct,ext} betragen. Als externe Betonzugfläche ist der Bereich außerhalb der statisch erforderlichen Bügel definiert (siehe Bild 3-12).

x ist die Höhe der Druckzone im GZT

Bild 3-12: Darstellung der externen Betonfläche Act, ext, Bild J1 aus /1/

Bei dem Aufbau des Bewehrungskorbes wird stets von außen nach innen konstruiert, sodass auch diese Vorgehensweise für die Bestimmung der erforderlichen Oberflächenbewehrung der Versuchskörper herangezogen werden soll. Die rissbreitenbegrenzende Oberflächenbewehrung (parallel zur Hauptbewehrung) sollte möglichst nahe am Bauteilrand ausgeführt werden. Um dies zu erreichen, wird lediglich das Nennmaß der Betondeckung cnom als Abstand angesetzt. Mit der Oberflächenbewehrung, welche gemäß /1/, $\phi_{surf} \le 10$ mm betragen soll, wird der Abstand vom Bauteilrand zum kreuzenden Oberflächenbewehrungsbügel zu c_{nom+} ϕ_{surf} . Zwischen der Oberflächenbewehrung und den eingebauten dicken Bewehrungsstäben ist in den meisten Fällen eine statisch erforderliche Bügelbewehrung angeordnet. An diese wird die Oberflächenbewehrung angebracht, sodass die statisch erforderliche Bügelbewehrung und die Bügel der Oberflächenbewehrung in derselben Ebene gefasst sind. Hiermit kann die externe Betonfläche von flächigen Bauteilen aus der Summe des Oberflächenbewehrungsdurchmessers und dem Nennmaß der Betondeckung bestimmt werden.

$$\mathbf{a}_{\text{ct,ext}} = \left(\mathbf{c}_{\text{nom}} + \boldsymbol{\phi}_{\text{surf}}\right) \cdot \frac{100 \text{cm}}{\text{m}} \tag{3.13}$$

Demzufolge kann die erforderliche Oberflächenbewehrung gemäß /1/ wie folgt berechnet werden:

$$a_{s,surf} = 0,02 \cdot a_{ct,ext} = 0,02 \cdot (c_{nom} + \phi_{surf}) \cdot \frac{100 cm}{m}$$
(3.14)

Diese Oberflächenbewehrung liegt bei den hergestellten Versuchskörpern im Umfang U_{surf} des um c_{nom} und ϕ_{surf} geschrumpften Querschnittes. In Tabelle 3-5 sind die Parameter zur Oberflächenbewehrung des Versuchsprogrammes zusammengefasst dargestellt.

Serie	a s,surf	$U_{s,surf}$	$A_{s,surf}$	Gewählt As,surf	Stababstand Längs Stababstand Quer
3	4,5 cm²/m	1,08 m	4,86 cm²	8φ10 mm (6,3 cm²)	φ10-150 φ10-150
4	4,5 cm²/m	1,08 m	4,86 cm ²	8φ10 mm (6,3 cm²)	φ10-150 φ6-200
5	9,0 cm²/m	1,08 m	9,72 cm²	16 φ10 mm (12,6 cm²)	φ10-64,3 φ10-64,3
6	9,0 cm²/m	1,08 m	9,72 cm²	16 φ10 mm (12,6 cm²)	φ10-64,3 φ6-200
7	4,5 cm²/m	0,52 m	2,34 cm ²	6 φ10mm (4,7cm²)	φ10-85 φ10-85

Tabelle 3-5: Oberflächenbewehrung der Querschnittsserien 3-7

Aufgrund des in /1/ geforderten maximalen Achsabstandes der rissbreitenbeschränkenden Oberflächenbewehrungsstäbe $s_t \le 150$ mm wurde die Serie 3 und 4 mit diesem maximalen Stababstand ausgeführt. Der Biegerollendurchmesser der Oberflächenbewehrungsbügel von 4 ϕ für Stäbe < 20mm wurde für die Bügeldurchmesser 10mm festgelegt (D_{min} = 40mm) und ebenfalls auf die Bügeldurchmesser 6mm angewandt. Hierdurch wurde die Außengeometrie der Bügel nicht verändert, sodass die Lage der Eckstäbe (40mm / 55mm) in allen Versuchen gleich blieb. Im Folgenden sind die Querschnitte der Serien 3 – 7 dargestellt.

Bild 3-15: Querschnitt Serie 5 2% Oberflächenbewehrung Bügel \ophi10-64.3

Bild 3-14: Querschnitt Serie 4 1% Oberflächenbewehrung Bügel ¢6-200

Bild 3-16: Querschnitt Serie 6 2% Oberflächenbewehrung Bügel ¢6-200

Bild 3-17: Querschnitt Serie 7 1% Oberflächenbewehrung Bügel \ophi10-85

3.4 Versuchsdurchführung

3.4.1 Zugversuche mit quasi-statischer Beanspruchung

Zunächst wurden die Messachsen (siehe Bild 3-7) durch eine scharfe Klinge auf der Betonoberfläche eingekerbt. Ein Anzeichnen der Achsen mit Hilfe von Filz- oder Bleistiften zeigte in den vergrößerten Aufnahmen des digitalen Mikroskops zu "breite" Strichstärken, was Schwierigkeiten bei der Rissbreitenmessung verursachte. Nachdem der Versuchskörper inkl. der Zugkonstruktion und Messtechnik eingebaut wurde, ist die Messung durch das Messwerterfassungsprogramm /21/ gestartet worden. Zunächst ist der Versuchskörper auf Risse, welche vor Beanspruchungsbeginn aufgetreten sind, untersucht worden. Falls bereits aus der Montage oder dem Transport Risse vorhanden waren, wurden diese fotografiert und ausgewertet. Anschließend wurde die Beanspruchung mit einer Belastungsgeschwindigkeit von 0,3mm/min in Lastschritten aufgebracht. Die Lastschritte wurden in Anlehnung an die Stahlspannungen gemäß /1/ Tabelle 7.2N bestimmt. Die einzelnen Lastschritte sind in der unten dargestellten Tabelle 3-6 aufgeführt. In den Plattenzugversuchen wurden die Laststufen optimiert, sodass nur noch 6 Laststufen betrachtete wurden. Diese sind in Tabelle 3-7 dargestellt.

	Stabdurchmesser ø						
Stahlspannung	10mm	14mm	20mm	25mm	28mm	40mm	50mm
[N/mm²]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
40	3,1	6,2	12,6	19,6	24,6	50,3	78,5
80	6,3	12,3	25,1	39,3	49,3	100,5	157,1
120	9,4	18,5	37,7	58,9	73,9	150,8	235,6
160	12,6	24,6	50,3	78,5	98,5	201,1	314,2
200	15,7	30,8	62,8	98,2	123,2	251,3	392,7
240	18,8	36,9	75,4	117,8	147,8	301,6	471,2
280	22,0	43,1	88,0	137,4	172,4	351,9	549,8
320	25,1	49,3	100,5	157,1	197,0	402,1	628,3
360	28,3	55,4	113,1	176,7	221,7	452,4	706,9
400	31,4	61,6	125,7	196,3	246,3	502,7	785,4
450	35,3	69,3	141,4	220,9	277,1	565,5	883,6
500	39,3	77,0	157,1	245,4	307,9	628,3	981,7

Tabelle 3-6: Lastschritte der Versuchsserie 1

	Stabdurchmesser						
Stahlspannung	Serie 2	Serie 3	Serie 4	Serie 5	Serie 6	Serie 7	
[N/mm ²]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
80	201,06	251,33	251,33	301,59	301,59	238,76	
120	301,59	376,99	376,99	452,39	452,39	358,14	
200	502,65	628,32	628,32	753,98	753,98	596,90	
280	703,72	879,65	879,65	1055,58	1055,58	835,66	
360	904,78	1130,97	1130,97	1357,17	1357,17	1074,42	
450	1130,97	1413,72	1413,72	1696,46	1696,46	1343,03	

 Tabelle 3-7:
 Lastschritte der Versuchsserie 2 - 7

Zwischen jedem Lastschritt wurden die Versuchskörper auf neue Risse untersucht. Die Risse wurden angezeichnet, nummeriert und der Schnittpunkt des Risses mit der Ebene der Bewehrungsachse bzw. der Messachsen (a – e; siehe Bild 3-7) auf der Bauteiloberfläche durch einen gelochten Aufkleber markiert. Anschließend wurde die Rissstelle mit Hilfe des digitalen Mikroskops fotografiert. Die Markierungsaufkleber (siehe Bild 3-18) sind hierbei nötig um stets dieselbe Rissstelle zu fotografieren und diese in den weiteren Lastschritten schneller wieder zu finden.

Bild 3-18: Markierungsaufkleber

Nachdem die letzte Laststufe erreicht wurde, sind die Beanspruchung abgelassen und die Rissabstände aufgenommen worden. Nach Versuchsende konnten die Rissbreiten aus den aufgenommen Bilder am PC vermessen werden. Hierzu wurde das Programm /20/ verwendet. Das Resultat der Aufnahmen waren Tabellen, in denen die Rissbreiten und die zugehörigen Bilder für jeden Riss gespeichert wurden. Durch die Möglichkeit, den Rissbereich in 84-facher Vergrößerung (Abmessungen des Bildes 2,4 x 2,0mm) betrachten zu können, stellte sich die Frage wie die Rissbreite auszumessen ist. In Bild 3-19 ist diese Problematik gut zu erkennen. Obwohl der Riss bei zentrischer Zugbeanspruchung wie vermutet senkrecht zur Belastungsachse verläuft, zeigt sich in den vergrößerten Aufnahmen, dass der Rissverlauf stetigen Richtungsänderungen unterworfen ist. Die Möglichkeit besteht nun, die Rissbreite orthogonal zu den Rissufern, in Richtung der Bewehrung oder in Spannungsrichtung / Lastrichtung zu messen. Bei vielen Ingenieuren besteht die Meinung, dass der Riss orthogonal zu den Rissufern gemessen werden muss. Begründet wird dies mit der Durchströmungsfläche des Risses z. B. für zerstörende Medien wie Salzwasser. Auch bei Messungen der Rissbreite durch Messkarten, welche mit Vergleichsstrichstärken arbeiten, kann zweckmäßig nur orthogonal gemessen werden. Betrachtet man jedoch Rissversuche anderer Forscher, bei denen die Rissbreiten mit Hilfe von Messuhren oder Wegaufnehmer gemessen wurden, steht fest, dass diese nicht orthogonal zu den Rissufern gemessen werden konnten sondern in Richtung der Bewehrungsachse bzw. in Lastrichtung oder zumindest in Achsrichtung des Messsystems. Wenn Lastrichtung und Richtung der Bewehrung übereinstimmen, können sich die Rissufer nur in diese Richtung verschieben, da sich die Bewehrung ebenfalls nur in selbige Richtung dehnen kann. Selbst bei einem schief zur Bewehrungs- und Lastrichtung verlaufenden Riss, muss die Rissbreite in Lastrichtung gleich sein. In Bild 3-19 ist die Rissbreite an drei Stellen des Rissausschnittes (2mm) gemessen.

Im oberen Bildbereich wurden die Rissbreite (4) orthogonal zu dem schief verlaufenden Rissufern und der Winkel (3) zur Bewehrungsrichtung gemessen. An den Stellen in Bildmitte (1) und im unteren Bildbereich (2) wurde jeweils in Lastrichtung gemessen, welche identisch mit der Bewehrungsrichtung der Versuchskörper ist. In Lastrichtung beträgt die Rissbreite 0,31mm wobei die Rissbreite orthogonal zum Rissufer unter dem Winkel von 52,5° nur 0,22mm beträgt. Rechnet man diese Rissbreite in die Richtung der Bewehrung um, erhält man einen Wert von 0,28mm. Dieser Wert liegt im Bereich der Messstellen (1) und (2). Es zeigt sich, dass wie

schon oben beschrieben die Verformungsrichtung des Risses, bei Übereinstimmung der Lastrichtung und der Richtung der Bewehrung, lediglich der Dehnungsrichtung der Bewehrung entsprechen kann. Daher wurden die Rissbreiten bei den durchgeführten Versuchen stets in Last- und Bewehrungsrichtung ausgewertet.

3.4.2 Zugversuche mit zyklischer Beanspruchung

Die Versuche mit zyklischer Beanspruchung wurden in einem Viersäulenprüfrahmen durchgeführt. Die Zugkonstruktion der Versuchskörper für zyklische Beanspruchungen ist identisch mit der Zugkonstruktion der quasi-statischen Zugversuche. Nach dem Einbau der Versuchskörper wurden die Messachsen mit Hilfe einer scharfen Klinge eingekerbt und die Betonoberfläche nach Rissen untersucht. Vor Versuchsbeginn gefundene Risse wurden fotografiert und ausgewertet. Nachdem die Messtechnik angeschlossen und gestartet wurde, ist der Versuchskörper quasi-statisch bis zum Erreichen der Oberspannung beansprucht worden. Anschließend wurden die Risse angezeichnet und die Kreuzungspunkte der Risse mit den Messachsen durch Aufkleber markiert. Im Weiteren sind diese Messstellen mit Hilfe des digitalen Mikroskops fotografiert worden. Die Beanspruchungshöhen der Versuche sind in Tabelle 3-8 dargestellt. Anschließend wurde der Versuchskörper bis zur Unterspannung entlastet und erneut bis zur Oberspannung belastet. Nach diesem ersten Lastwechsel wurden die Messstellen erneut fotografiert. Die Beanspruchungshöhe wurde aus den guasi-statischen Zugversuchen bestimmt. Als Oberlast wurde die Beanspruchung angesetzt, welche in den quasi-statischen Zugversuchen im Mittel eine Rissbreite von 0,3mm verursachte. In der 3. Sitzung des projektbegleitenden Ausschusses zum Forschungsprojekt wurde eine Unterlast von 2/3 der Oberlast festgelegt. Dies wurde begründet mit der überwiegend durch Eigenlast beanspruchten Bauteile, welche voraussichtlich mit großen Stabdurchmessern bewehrt werden.

Tabelle 3-8:	Beanspruchung	shöhen der z	vklisch bel	asteten Ve	rsuche
	Deanspruchung				Juche

Versuch	Rissbreite	Oberspannung	Unterspannung
RB.1.40.C30/37.0.zy	0,3 mm	300 N/mm ²	200 N/mm ²
RB.1.50.C30/37.0.zy	0,3 mm	220 N/mm ²	140 N/mm ²

Die nächsten Lastwechsel wurden mit 4Hz durchgeführt. Die Beanspruchungsfunktion folgte einem sinusförmigen Verlauf. Es wurden 1.000.000 Lastwechsel ausgeführt, wobei die Risse in festgelegten Intervallen fotografiert wurden. Die Intervalle und die zugehörige Anzahl der Lastzyklen sind in Tabelle 3-9 dargestellt.

 Tabelle 3-9:
 Intervall der Rissbreitenmessungen

Intervall	Anzahl der Lastzyklen
1	1
2	100
3	250
4	500
5	1.000
6	2.500
7	5.000
8	10.000
9	25.000
10	50.000
11	100.000
12	250.000
13	500.000
14	1.000.000

Nach dem letzten Lastzyklus wurden die Versuchskörper ausgebaut und die Rissabstände dokumentiert. Die Auswertung der Rissbilder erfolgte durch /20/.

3.5 Werkstoffeigenschaften

3.5.1 Betoneigenschaften

Als Standard-Rezeptur wurde ein Beton der Druckfestigkeitsklasse C30/37 benutzt. Die Rezeptur ist in Tabelle 3-10 dargestellt. Für die Versuche mit höherfestem Beton wurde die Rezeptur in Tabelle 3-11 verwendet. Da die Versuchskörper der Serie 1 mit Stabdurchmesser $\phi = 10$ mm und $\phi = 14$ mm einen geringen Randabstand aufweisen, wurde für diese Versuchskörper eine Betonrezeptur mit Größtkorn von 8mm verwendet (siehe Tabelle 3-12 und Tabelle 3-13).

Festigkeitsklasse	Bezeichnung	Masse	Dichte	Volumen
C30/37	[-]	[kg]	[kg/dm³]	[dm³]
Zement	CEM I 42,5 N	327,21	3,17	103,22
Zuschlag	Sand 0/2	570,30	2,60	219,30
	Kies 2/8	570,30	2,60	219,30
	Kies 8/16	644,06	2,61	246,80
Wasser	-	196,32	1,00	196,32

Tabelle 3-10: Standard-Rezeptur C30/37

Tabelle 3-11: Standard-Rezeptur C50/60

Festigkeitsklasse	Bezeichnung	Masse	Dichte	Volumen
C50/60	[-]	[kg]	[kg/dm³]	[dm³]
Zement	CEM I 52,5 R	375,00	3,11	120,58
Zuschlag	Sand 0/2	591,28	2,60	227,40
	Kies 2/8	591,28	2,60	227,40
	Kies 8/16	665,19	2,61	255,80
Fließmittel	Glenium ACE 30	3,00	1,06	2,83
Wasser	-	153,75	1,00	153,75

Tabelle 3-12: Betonrezeptur C30/37, Größtkorn 8mm

Festigkeitsklasse	Bezeichnung	Masse	Dichte	Volumen
C30/37	[-]	[kg]	[kg/dm³]	[dm³]
Zement	CEM I 42,5 N	340,29	3,17	107,35
Zuschlag	Zuschlag Sand 0/2		643,30 2,60	
	Kies 2/8	1089,08	2,60	418,90
Wasser	-	211,35	1,00	211,35

Tabelle 3-13: Betonrezeptur C50/60, Größtkorn 8mm

Festigkeitsklasse	Bezeichnung	Masse	Dichte	Volumen
C50/60	[-]	[kg]	[kg/dm³]	[dm³]
Zement	CEM I 42,5 N	478,84	3,17	151,05
Zuschlag	Sand 0/2	615,05	2,60	236,60
	Kies 2/8	1042,77	2,60	401,10
Fließmittel	Glenium ACE 30	3,83	1,06	3,61
Wasser	-	196,32	1,00	196,32

3.5.2 Materialeigenschaften

Die Eigenschaften der Bewehrung sowie des Betons wurden am Materialprüfamt der Technischen Universität Kaiserslautern sowie dem Materialprüfamt der Technischen Universität Braunschweig ermittelt. Es wurden der Elastizitätsmodul, die Fließgrenze sowie die bezogene Rippenfläche der Haupt- und Oberflächenbewehrung als auch die Druckfestigkeit, der Elastizitätsmodul, die Spaltzugfestigkeit sowie die zentrische Zugfestigkeit des Betons bestimmt. Die Materialeigenschaften sind in Tabelle 3-14 und Tabelle 3-15 zusammengefasst dargestellt.

Stabdurchmesser	E-Modul	Fließgrenze	bezogene Rippenfläche
[mm]	[N/mm ²]	[N/mm ²]	[-]
	Hauptbe	wehrung	
10	195687	523	0,064
14	203467	549	0,056
20	207778	617	0,083
25	206119	618	0,071
28	203338	602	0,064
40	201166	568	0,065
50	196433	529	0,073
	Oberflächer	nbewehrung	
10	188333	576	0,056

Tabelle 3-14: Materialeigenschaften der Bewehrung

Tabelle 3-15: Materialeigenschaften des Betons

Versuchskörper	Würfeldruckfestigkeit	про Ш [N/mm²]	Spaltzugfestigkeit	zentrische Zugfestigkeit
RB.1.10.C30/37.0.ko_V1	48,4	27200	3,43	3,08
RB.1.10.C30/37.0.ko_V2	48,4	27200	3,43	3,08
RB.1.10.C30/37.0.ko_V3	48,4	27200	3,43	3,08
RB.1.10.C50/60.0.ko_V1	57,4	32000	4,56	4,11
RB.1.14.C30/37.0.ko_V1	48,4	27200	3,43	3,08
RB.1.14.C30/37.0.ko_V2	48,4	27200	3,43	3,08
RB.1.14.C30/37.0.ko_V3	48,4	27200	3,43	3,08
RB.1.14.C50/60.0.ko_V1	57,4	32000	4,56	4,11
RB.1.20.C30/37.0.ko_V4	56,2	30000	3,88	3,50
RB.1.20.C30/37.0.ko_V5	56,2	30000	3,88	3,50
RB.1.20.C30/37.0.ko_V6	56,2	30000	3,88	3,50

RB.1.20.C30/37.0.ko_V1	37,6	26900	3,70	3,35
RB.1.20.C30/37.0.ko_V2	37,6	26900	3,70	3,35
RB.1.20.C30/37.0.ko_V3	37,6	26900	3,70	3,35
RB.1.25.C30/37.0.ko_V1	36,2	25200	3,03	2,73
RB.1.25.C30/37.0.ko_V2	36,2	25200	3,03	2,73
RB.1.25.C30/37.0.ko_V3	36,2	25200	3,03	2,73
RB.1.28.C30/37.0.ko_V1	36,2	25200	3,03	2,73
RB.1.28.C30/37.0.ko_V2	36,2	25200	3,03	2,73
RB.1.28.C30/37.0.ko_V3	36,2	25200	3,03	2,73
RB.1.40.C30/37.0.ko_V1	50,2	29500	3,54	3,19
RB.1.40.C30/37.0.ko_V2	50,2	29500	3,54	3,19
RB.1.40.C30/37.0.ko_V3	50,2	29500	3,54	3,19
RB.1.40.C50/60.0.ko_V1	65,1	30000	3,51	3,32
RB.1.40.C30/37.0.zy_V1	45,8	27400	3,73	3,36
RB.1.40.C30/37.0.zy_V2	45,8	27400	3,73	3,36
RB.1.40.C30/37.0.zy_V3	45,8	27400	3,73	3,36
RB.1.50.C30/37.0.ko_V1	44,0	25400	3,48	3,13
RB.1.50.C30/37.0.ko_V2	44,0	25400	3,48	3,13
RB.1.50.C30/37.0.ko_V3	44,0	25400	3,48	3,13
RB.1.50.C50/60.0.ko_V1	65,1	30000	3,51	3,32
RB.1.50.C30/37.0.zy_V1	45,8	27400	3,73	3,36
RB.1.50.C30/37.0.zy_V2	45,8	27400	3,73	3,36
RB.1.50.C30/37.0.zy_V3	45,8	27400	3,73	3,36
RB.2.40.C30/37.0.ko_V1	51,9	31600	3,60	3,24
RB.2.40.C30/37.0.ko_V2	55,5	31300	3,99	3,59
RB.2.40.C30/37.0.ko_V3	38,5	28700	3,80	3,42
RB.2.40.C50/60.0.ko_V1	88,0	35600	4,64	4,18
RB.3.40.C30/37.1.ko_V1	47,9	31100	3,64	3,28
RB.3.40.C30/37.1.ko_V2	47,7	30800	3,22	2,90
RB.3.40.C30/37.1.ko_V3	41,7	28400	3,04	2,74
RB.3.40.C50/60.1.ko_V1	86,3	38000	3,96	3,56
RB.4.40.C30/37.1.ko_V1	51,4	30000	3,68	3,31
RB.4.40.C30/37.1.ko_V2	51,0	30700	3,67	3,30
RB.4.40.C30/37.1.ko_V3	46,5	29900	3,22	2,90
RB.4.40.C50/60.1.ko_V1	67,4	38900	3,76	3,38
RB.5.40.C30/37.2.ko_V1	46,0	29000	3,59	3,23
RB.5.40.C30/37.2.ko_V2	44,5	28000	2,99	2,69
RB.5.40.C30/37.2.ko_V3	51,4	28900	3,31	2,98
RB.5.40.C50/60.2.ko_V1	86,2	34900	4,80	4,32
RB.6.40.C30/37.2.ko_V1	37,9	25600	3,03	2,73
HB.6.40.C30/37.2.ko_V2	47,5	29700	3,50	3,15
HB.6.40.C30/37.2.ko_V3	50,3	28000	3,59	3,23
KB.6.40.C50/60.2.K0_V1	87,3	38200	4,36	3,92
KB.7.40.C30/37.1.K0_V1	34,6	2/100	2,89	2,60
KB.7.40.C30/37.1.K0_V2	35,4	2/100	2,73	2,46
KB.7.40.C30/37.1.K0_V3	49,2	27700	3,68	3,31
RB.7.40.C50/60.1.ko_V1	/2,6	31400	4,03	3,63

3.6 Versuchsergebnisse

3.6.1 Rissabstand

Nachdem die letzte Belastungsstufe erreicht wurde, sind die Beanspruchung abgelassen und die Rissabstände vermessen worden. In Tabelle 3-16 sind die Ergebnisse der Rissabstandsmessung der Serie 1 dargestellt. Wie zu erwarten, steigt mit zunehmendem Bewehrungsdurchmesser der Rissabstand.

Serie 1								
Durchmesser [mm]:	10	14	20	25	28	40	50	
Mittelwert s _r [cm]:	4,88	6,30	9,38	11,21	13,48	20,78	27,54	
Standardab. [cm]:	1,46	1,78	2,69	3,21	3,63	5,61	7,42	
Variationskoeffizient:	30%	28%	29%	29%	27%	27%	27%	
Anzahl Rissabstand:	328	254	128	107	89	77	57	
S r 75% [CM] :	5,93	7,58	11,37	13,63	16,24	25,07	33,34	
Rechenwert EC2 [cm]	5,38	7,53	10,76	13,45	15,07	21,52	26,92	

Tabelle 3-16: Ergebnisse der Rissabstandsmessung - Serie 1

Das 75%-Fraktil (sr 75%) wurde gemäß /11/ mit einem Konfidenzintervall von 75% bestimmt. Die Ergebnisse (Mittelwert **=**, Fraktilwert –) der Rissabstandsmessung von Serie 1 sowie die Rechenwerte nach /1/ sind in Bild 3-20 graphisch dargestellt. Einzelwerte der Versuche können dem Anhang entnommen werden.

Bild 3-20: Ergebnisse der Rissabstandsmessung - Serie 1

In sind die Rissabstände der Versuchsserien 2 bis 7 aufgeführt. Gut zu erkennen ist, dass die Wahl der kreuzenden Oberflächenbewehrung (Bügel) kaum Einfluss auf den Rissabstand zeigt.

Serie	2	3	4	5	6	7
Oberflächenbeweh.:	0%	1,1%	1,1%	2,2%	2,2%	1,5%
Mittelwert sr [cm]:	19,42	13,56	13,39	8,33	9,61	9,05
Standardab. [cm]:	6,83	4,22	4,46	2,84	3,34	3,29
Variationskoeffizient:	35%	31%	33%	34%	35%	36%
Anzahl:	165	236	239	384	333	311
S r 75% [CM]:	24,44	16,62	16,62	10,36	12,01	11,42
Rechenwert EC2 [cm]	20,8	19,11	19,11	12,65	12,65	10,56

Tabelle 3-17: Ergebnisse der Rissabstandsmessung - Serie 2 - 7

Ebenso wie bereits bei Serie 1 gezeigt, werden die Ergebnisse der Rissabstandsmessungen der Serie 2 – 7 zusammenfassend in Bild 3-21 graphisch dargestellt (Mittelwert ■, Fraktilwert –). Aufgrund der unterschiedlichen Bewehrungsgehalte fällt ein direkter Vergleich, wie es in Bild 3-20 möglich ist, hier schwer. Einzelwerte der Rissabstandsmessungen können dem Anhang entnommen werden.

Bild 3-21: Ergebnisse der Rissabstandsmessung - Serie 2 - 7

3.6.2 Rissbreite

Wie bereits erwähnt, wurden Bilder der Risse mit Hilfe eines digitalen Mikroskops auf verschiedenen Laststufen aufgenommen. Diese wurden anschließend vermessen und in Tabellen zusammengefasst. Insgesamt wurden fast 30.000 Einzelrissbreiten aufgenommen. In den Auswertungen wurden jeweils alle gleichen Versuche betrachtet, sodass aus den so entstandenen großen Datenbasen jeweils die Mittelwerte, die Standardabweichungen sowie die Variationskoeffizienten bestimmt werden konnten. Mit Hilfe des k-Faktor gemäß /12/ wurde aus dem Mittelwert und der Standardabweichung das 75%-Fraktil der Rissbreite bei einem Konfidenzintervall von 75% bestimmt. In den Serien 2 – 6 wurde jeder Riss an fünf Achsen a – e (siehe 3.2.1, Bild 3-7) gemessen. Die gleichen Achsen a und e, b und d sowie Achse c wurden gemeinsam ausgewertet. Die Ergebnisse der Rissbreitenmessungen sind folgend aufgeführt. Einzelwerte können dem Anhang entnommen werden.

3.6.2.1 Serie 1

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,033	0,045	0,068	0,088	0,105	0,125
Standardab. [mm]:	0,010	0,019	0,030	0,041	0,046	0,050
Variationskoeffizient:	30%	42%	44%	46%	44%	40%
Anzahl:	9	70	138	170	201	234
k-Faktor:	0,985	0,770	0,742	0,735	0,730	0,726
w75% [mm]:	0,043	0,060	0,090	0,118	0,138	0,162
Rechenwert EC2 [mm]:	0,013	0,020	0,041	0,063	0,085	0,110

Tabelle 3-18: Ergebnisse der Rissbreitenmessung Serie 1 - RB.1.10.C30/37.0.ko

 Tabelle 3-19:
 Ergebnisse der Rissbreitenmessung Serie 1 - RB.1.10.C50/60.0.ko

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,101	0,103	0,123	0,120	0,131	0,154
Standardab. [mm]:	0,047	0,036	0,035	0,046	0,049	0,052
Variationskoeffizient:	47%	35%	28%	38%	37%	34%
Anzahl:	12	18	26	54	63	74
k-Faktor:	0,933	0,877	0,838	0,785	0,776	0,767
w 75% [mm]:	0,145	0,134	0,152	0,156	0,169	0,195
Rechenwert EC2 [mm]:	0,013	0,020	0,038	0,060	0,082	0,106

Tabelle 3-20:	Ergebnisse	der Rissbreitenmessu	ng Serie 1	- RB.1.14.C30/37.0.ko
---------------	------------	----------------------	------------	-----------------------

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,037	0,047	0,072	0,091	0,111	0,134
Standardab. [mm]:	0,026	0,033	0,049	0,063	0,065	0,067
Variationskoeffizient:	70%	70%	67%	68%	59%	50%
Anzahl:	76	119	141	166	178	187
k-Faktor:	0,766	0,747	0,741	0,735	0,734	0,732
w 75% [mm] :	0,056	0,071	0,108	0,138	0,158	0,183
Rechenwert EC2 [mm]:	0,018	0,027	0,054	0,084	0,114	0,147

Tabelle 3-21: Ergebnisse der Rissbreitenmessu	ung Serie 1 - RB.1.14.C50/60.0.kc
---	-----------------------------------

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,095	0,096	0,098	0,116	0,138	0,158
Standardab. [mm]:	0,017	0,032	0,037	0,041	0,051	0,053
Variationskoeffizient:	18%	34%	38%	35%	37%	33%
Anzahl:	9	17	41	52	57	60
k-Faktor:	0,985	0,884	0,801	0,787	0,781	0,778
w 75% [mm]:	0,112	0,124	0,128	0,148	0,178	0,199
Rechenwert EC2 [mm]:	0,018	0,027	0,051	0,080	0,110	0,143

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,053	0,075	0,112	0,148	0,179	0,208
Standardab. [mm]:	0,031	0,041	0,065	0,074	0,078	0,090
Variationskoeffizient:	58%	55%	58%	50%	44%	43%
Anzahl:	134	161	192	208	189	243
k-Faktor:	0,743	0,736	0,731	0,729	0,732	0,725
w75% [mm]:	0,077	0,105	0,160	0,202	0,236	0,273
Rechenwert EC2 [mm]:	0,025	0,037	0,076	0,118	0,159	0,206

Tabelle 3-22: Ergebnisse der Rissbreitenmessung Serie 1 - RB.1.20.C30/37.0.ko

	Tabelle 3-23:	Ergebnisse d	er Rissbreitenmessung	Serie 1 ·	- RB.1.25.C30/37.0.ko
--	---------------	--------------	-----------------------	-----------	-----------------------

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,067	0,079	0,105	0,128	0,147	0,185
Standardab. [mm]:	0,030	0,032	0,045	0,049	0,069	0,075
Variationskoeffizient:	45%	41%	43%	39%	47%	40%
Anzahl:	65	77	86	90	104	104
k-Faktor:	0,774	0,765	0,760	0,758	0,752	0,752
w 75% [mm]:	0,090	0,103	0,139	0,165	0,198	0,242
Rechenwert EC2 [mm]:	0,033	0,052	0,107	0,162	0,217	0,279

Tabelle 3-24: Ergebnisse der Rissbreitenmessung Serie 1 - RB.1.28.C30/37.0
--

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,060	0,077	0,128	0,148	0,197	0,263
Standardab. [mm]:	0,031	0,040	0,066	0,084	0,094	0,111
Variationskoeffizient:	53%	52%	52%	57%	48%	42%
Anzahl:	55	61	70	81	85	86
k-Faktor:	0,784	0,777	0,770	0,763	0,761	0,760
w 75% [mm] :	0,084	0,108	0,179	0,212	0,269	0,348
Rechenwert EC2 [mm]:	0,036	0,056	0,115	0,174	0,233	0,300

Tabelle 3-25:	Ergebnisse der	Rissbreitenmessung	Serie 1	- RB.1.40.C30/37.0.ko
---------------	----------------	--------------------	---------	-----------------------

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,086	0,114	0,198	0,265	0,335	0,431
Standardab. [mm]:	0,050	0,076	0,101	0,109	0,146	0,163
Variationskoeffizient:	58%	67%	51%	41%	43%	38%
Anzahl:	35	44	49	53	56	57
k-Faktor:	0,813	0,797	0,790	0,786	0,782	0,781
w 75% [mm] :	0,127	0,174	0,278	0,351	0,449	0,559
Rechenwert EC2 [mm]:	0,051	0,077	0,160	0,246	0,332	0,428

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,133	0,180	0,256	0,320	0,372	0,466
Standardab. [mm]:	0,088	0,119	0,134	0,133	0,169	0,164
Variationskoeffizient:	67%	66%	52%	41%	45%	35%
Anzahl:	12	13	15	17	19	19
k-Faktor:	0,933	0,920	0,900	0,884	0,870	0,870
w75% [mm]:	0,215	0,289	0,377	0,437	0,519	0,609
Rechenwert EC2 [mm]:	0,053	0,079	0,163	0,250	0,338	0,437

Tabelle 3-26: Ergebnisse der Rissbreitenmessung Serie 1 - RB.1.40.C50/60.0.ko

Tabelle 3-27: Ergebnisse der Rissbreitenmessung Serie 1 - RB.1.40.C30/37.0.zy

Versuchnr.:	V1	V2	V3	V1,2,3
Obere Stahlspannung [N/mm²]:	300	300	300	300
Untere Stahlspannung [N/mm²]:	200	200	200	200
Rissbreite w1 [mm]:	0,315	0,292	0,276	0,294
Rissbreite w _{1.000.000} [mm]:	0,435	0,376	0,347	0,386
Faktor w1/w1.000.000	1,38	1,29	1,26	1,311

Tabelle 3-28: Ergebnisse der Rissbreitenmessung Serie 1 - RB.1.50.C30/37.0.ko

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,100	0,154	0,237	0,344	0,419	0,551
Standardab. [mm]:	0,067	0,099	0,139	0,130	0,155	0,180
Variationskoeffizient:	67%	64%	59%	38%	37%	33%
Anzahl:	27	31	39	39	28	28
k-Faktor:	0,835	0,823	0,805	0,805	0,831	0,831
w75% [mm]:	0,156	0,235	0,348	0,449	0,548	0,701
Rechenwert EC2 [mm]:	0,066	0,099	0,204	0,314	0,423	0,547

Tabelle 3-29:	Ergebnisse der Ris	sbreitenmessung Ser	ie 1 - RB.	1.50.C50/60.0.ko
---------------	--------------------	---------------------	------------	------------------

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert wm [mm]:	0,110	0,132	0,291	0,362	0,446	0,614
Standardab. [mm]:	0,052	0,077	0,130	0,143	0,147	0,264
Variationskoeffizient:	47%	58%	45%	40%	33%	43%
Anzahl:	11	12	12	12	12	12
k-Faktor:	0,947	0,933	0,933	0,933	0,933	0,933
w 75% [mm]:	0,160	0,204	0,412	0,496	0,583	0,861
Rechenwert EC2 [mm]:	0,066	0,099	0,203	0,313	0,422	0,546

Versuchnr.:	V1	V2	V3	V1,2,3
Obere Stahlspannung [N/mm²]:	220	220	220	220
Untere Stahlspannung [N/mm²]:	140	140	140	140
Rissbreite w1 [mm]:	0,239	0,235	0,282	0,252
Rissbreite w _{1.000.000} [mm]:	0,288	0,358	0,385	0,344
Faktor w ₁ /w _{1.000.000}	1,21	1,52	1,37	1,364

Tabelle 3-30: Ergebnisse der Rissbreitenmessung Serie 1 - RB.1.50.C30/37.0.zy

3.6.2.2 Serie 2

Tabelle 3-31: Ergebnisse der Rissbreitenmessung Serie 2 - RB.2.40.C30/37.0.ko – Achsen a,b,c,d,e

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,176	0,208	0,251	0,316	0,375	0,460
Standardab. [mm]:	0,105	0,130	0,152	0,169	0,189	0,214
Variationskoeffizient:	60%	63%	61%	54%	50%	47%
Anzahl:	132	165	226	246	261	263
k-Faktor:	0,743	0,736	0,727	0,724	0,723	0,723
w75% [mm]:	0,254	0,304	0,361	0,438	0,511	0,615
Rechenwert EC2 [mm]:	0,062	0,138	0,230	0,374	0,527	0,699

Tabelle 3-32: Ergebnisse der Rissbreitenmessung Serie 2 - RB.2.40.C50/60.0.ko – Achsen a,b,c,d,e

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,241	0,284	0,337	0,327	0,389	0,456
Standardab. [mm]:	0,053	0,076	0,164	0,170	0,181	0,213
Variationskoeffizient:	22%	27%	49%	52%	47%	47%
Anzahl:	37	57	73	98	105	109
k-Faktor:	0,809	0,781	0,768	0,754	0,752	0,750
w75% [mm]:	0,284	0,343	0,463	0,455	0,526	0,615
Rechenwert EC2 [mm]:	0,051	0,114	0,230	0,342	0,496	0,668

3.6.2.3 Serie 3

Tabelle 3-33: Ergebnisse der Rissbreitenmessung Serie 3 - RB.3.40.C30/37.1.ko – Achsen a,b,c,d,e

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,081	0,100	0,142	0,181	0,219	0,263
Standardab. [mm]:	0,041	0,044	0,056	0,081	0,088	0,114
Variationskoeffizient:	51%	44%	39%	45%	40%	43%
Anzahl:	252	328	386	407	413	421
k-Faktor:	0,724	0,717	0,714	0,713	0,712	0,712
w 75% [mm]:	0,111	0,131	0,181	0,239	0,282	0,344
Rechenwert EC2 [mm]:	0,047	0,072	0,140	0,220	0,300	0,390

Stahlspannung [N/mm²]:	80	120	200	280	360
Mittelwert w _m [mm]:	0,114	0,113	0,153	0,209	0,249
Standardab. [mm]:	0,035	0,043	0,043	0,054	0,071
Variationskoeffizient:	31%	38%	28%	26%	29%
Anzahl:	64	105	140	142	145
k-Faktor:	0,775	0,752	0,741	0,740	0,740
w _{75%} [mm]:	0,142	0,145	0,185	0,249	0,302
Rechenwert EC2 [mm]:	0,039	0,072	0,131	0,211	0,291

Tabelle 3-34: Ergebnisse der Rissbreitenmessung Serie 3 - RB.3.40.C50/60.1.ko – Achsen a,b,c,d,e

3.6.2.4 Serie 4

Tabelle 3-35: Ergebnisse der Rissbreitenmessung Serie 4 - RB.4.40.C30/37.1.ko – Achsen a,b,c,d,e

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,087	0,110	0,155	0,198	0,236	0,283
Standardab. [mm]:	0,038	0,036	0,057	0,080	0,100	0,125
Variationskoeffizient:	44%	33%	37%	40%	42%	44%
Anzahl:	217	295	354	383	404	413
k-Faktor:	0,728	0,720	0,716	0,714	0,713	0,712
w 75% [mm]:	0,115	0,136	0,195	0,254	0,307	0,372
Rechenwert EC2 [mm]:	0,044	0,072	0,136	0,216	0,296	0,386

Tabelle 3-36: Ergebnisse der Rissbreitenmessung Serie 4 - RB.4.40.C50/60.1.ko – Achsen a,b,c,d,e

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,094	0,116	0,162	0,198	0,233	0,272
Standardab. [mm]:	0,044	0,043	0,058	0,075	0,097	0,126
Variationskoeffizient:	47%	37%	36%	38%	42%	46%
Anzahl:	99	114	122	134	141	147
k-Faktor:	0,754	0,749	0,746	0,743	0,741	0,739
w 75% [mm]:	0,128	0,148	0,206	0,253	0,305	0,365
Rechenwert EC2 [mm]:	0,041	0,072	0,134	0,215	0,295	0,385

3.6.2.5 Serie 5

Tabelle 3-37: Ergebnisse der Rissbreitenmessung Serie 5 - RB.5.40.C30/37.2.ko – Achsen a,b,c,d,e

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,063	0,072	0,098	0,127	0,152	0,185
Standardab. [mm]:	0,032	0,028	0,040	0,055	0,067	0,081
Variationskoeffizient:	50%	39%	41%	43%	44%	44%
Anzahl:	261	388	514	579	619	639
k-Faktor:	0,723	0,714	0,709	0,707	0,707	0,706
w 75% [mm] :	0,086	0,092	0,127	0,165	0,199	0,242
Rechenwert EC2 [mm]:	0,032	0,048	0,099	0,152	0,205	0,265

Stahlspannung [N/mm²]:	80	120	200	280
Mittelwert w _m [mm]:	0,067	0,084	0,104	0,122
Standardab. [mm]:	0,020	0,023	0,034	0,044
Variationskoeffizient:	29%	27%	33%	36%
Anzahl:	42	56	75	93
k-Faktor:	0,800	0,782	0,767	0,757
w _{75%} [mm]:	0,083	0,102	0,130	0,156
Rechenwert EC2 [mm]:	0,026	0,048	0,085	0,138

Tabelle 3-38: Ergebnisse der Rissbreitenmessung Serie 5 - RB.5.40.C50/60.2.ko – Achsen a,b,c,d,e

3.6.2.6 Serie 6

Tabelle 3-39: Ergebnisse der Rissbreitenmessung Serie 6 - RB.6.40.C30/37.2.ko – Achsen a,b,c,d,e

Stahlspannung [N/mm²]:	80	120	200	280	360	450
Mittelwert w _m [mm]:	0,066	0,074	0,095	0,126	0,157	0,186
Standardab. [mm]:	0,028	0,028	0,038	0,048	0,060	0,075
Variationskoeffizient:	42%	38%	40%	38%	38%	40%
Anzahl:	196	373	492	535	570	378
k-Faktor:	0,731	0,715	0,709	0,708	0,708	0,714
w 75% [mm]:	0,087	0,094	0,122	0,159	0,199	0,239
Rechenwert EC2 [mm]:	0,032	0,048	0,097	0,151	0,204	0,264

Tabelle 3-40. Ergebnisse der Rissbreitenmessung Serie 6 - RB.6.40.C50/60.2.ko – Achsen a,b,c,d,e

Stahlspannung [N/mm²]:	80	120	200	280	360
Mittelwert w _m [mm]:	0,074	0,085	0,105	0,127	0,151
Standardab. [mm]:	0,026	0,027	0,034	0,044	0,057
Variationskoeffizient:	35%	32%	32%	35%	38%
Anzahl:	100	140	189	216	226
k-Faktor:	0,753	0,741	0,732	0,728	0,727
w 75% [mm] :	0,093	0,105	0,130	0,159	0,192
Rechenwert EC2 [mm]:	0,029	0,048	0,090	0,143	0,196

3.6.2.7 Serie 7

Tabelle 3-41: Ergebnisse der Rissbreitenmessung Serie 7 - RB.7.40.C30/37.1.ko – Achsen a,e

Stahlspannung [N/mm²]:	80	120	200	280	360
Mittelwert w _m [mm]:	0,072	0,079	0,099	0,124	0,144
Standardab. [mm]:	0,026	0,029	0,037	0,044	0,054
Variationskoeffizient:	35%	36%	37%	36%	37%
Anzahl:	98	142	201	216	154
k-Faktor:	0,754	0,740	0,730	0,728	0,737
w 75% [mm]:	0,091	0,101	0,126	0,156	0,184
Rechenwert EC2 [mm]:	0,026	0,047	0,091	0,135	0,179

Stahlspannung [N/mm²]:	80	120	200	280	360
Mittelwert wm [mm]:	0,064	0,074	0,094	0,118	0,140
Standardab. [mm]:	0,029	0,030	0,036	0,040	0,049
Variationskoeffizient:	45%	40%	38%	34%	35%
Anzahl:	36	48	65	72	75
k-Faktor:	0,811	0,791	0,774	0,769	0,767
w 75% [mm]:	0,087	0,097	0,121	0,149	0,177
Rechenwert EC2 [mm]:	0,026	0,042	0,086	0,130	0,174

 Tabelle 3-42:
 Ergebnisse der Rissbreitenmessung Serie 7 - RB.7.40.C50/60.1.ko – Achsen a,e

4 Interpretation der Versuchsergebnisse und Vorschläge

4.1 Wirkungszone der Bewehrung

Die Wirkungszone der Bewehrung wurde in der Serie 2 (ohne Oberflächenbewehrung) an Plattenzugversuchen überprüft. Die Versuchskörpergeometrie wurde in dieser Serie so festgelegt, dass beide Wirkungszonen der Hauptbewehrungsstäbe direkt aneinander grenzen und somit Rissbreiten über die gesamte Versuchskörperbreite begrenzen sollten. Die Ergebnisse der durchgeführten Versuche zeigten weder immens vergrößerte Rissbreiten in der Messachse c, noch hat sich ein ausgeprägtes Sekundärrissbild eingestellt, an dem die Wirkungszone der Bewehrung eingeordnet werden könnte. Somit kann die Annahme der Wirkungszone der Bewehrung gemäß /1/ und /2/ mit 2,5·d1 auch für die untersuchten dicken Bewehrungsstäbe angesetzt werden.

/2/ NCI Zu 7.3.2 (3):

ANMERKUNG Der Ansatz für den Wirkungsbereich der Bewehrung $A_{c,eff}$ mit 2,5·(h – d) gilt nur für eine konzentrierte Bewehrungsanordnung und dünne Bauteile mit h / (h – d) ≤ 10 bei Biegung und h / (h – d) ≤ 5 bei zentrischem Zwang hinreichend genau. Bei dickeren Bauteilen kann der Wirkungsbereich bis auf 5(h – d) anwachsen (siehe Bild 7.1 d).

Normtextänderungsvorschlag: Kein Änderungsvorschlag.

4.2 Rissabstand

Die Berechnungsgleichung des Rissabstandes gemäß /1/ und /2/ konnte an allen Versuchskörperserien überprüft werden. Hierbei zeigte sich, dass in den Versuchen der Serie 1 und Serie 7 die Rissabstände gemäß /1/ und /2/ für große Bewehrungsstäbe ϕ > 28mm unterschätzt werden. In den Versuchen der Serien 2 – 6 wurden jedoch Rissabstände gemessen, welche kleiner als die gemäß /1/ und /2/ berechneten Werte des Rissabstandes sind und somit die Versuchsergebnisse überschätzen. Erklärt wird diese Beobachtung durch den sehr großen Bewehrungsgehalt der Serien 1 und Serie 7 mit peff,Netto von 5,16% und 7,14%, sodass davon ausgegangen wird, dass die Gleichung des Rissabstandes gemäß /1/ und /2/ nicht für solch hohe Bewehrungsgehalte peff.Netto>4,5% anwendbar ist. Für die Versuche der Serien 3 – 6 zeigten sich gute Übereinstimmungen des Rechenwertes mit den Versuchsergebnissen. Lediglich bei Serie 2 (ohne Oberflächenbewehrung) ist die Differenz zwischen dem Rechenwert und den Versuchsergebnissen erhöht, was durch den Grenzfall im Rissabstand begründet werden kann. Gemäß /1/ und /2/ soll der Rissabstand mit 1,3·(h-x) berechnet werden, wenn der Abstand der im Verbund liegenden Stäbe kleiner 5 (c + $\phi/2$) ist, was genau dem hier vorliegenden Fall entspricht. Wird der Rissabstand nach dieser Gleichung bestimmt, unterschreitet der Rechenwert leicht den Rissabstand der Versuche. Dennoch kann aus den Versuchsergebnissen abgeleitet werden, dass die Berechnungsgleichung des Rissabstandes gemäß /1/ und /2/ auch für große Stabdurchmesser angewandt werden kann.

/1/ Abs. 7.3.4 (3):

Bei geringem Abstand der im Verbund liegenden Stäbe untereinander in der Zugzone ($\leq 5 \cdot (c + \phi / 2)$) darf der maximale Rissabstand bei abgeschlossenem Rissbild mit Gleichung (7.11) ermittelt werden (siehe Bild 7.2):

 $S_{r,max} = k_3 \cdot C + k_1 \cdot k_2 \cdot k_4 \cdot \phi / \rho_{p,eff}$

/2/ **NDP zu 7.3.4 (3):** $k_1 \cdot k_2 = 1$; $k_3 = 0$; $k_4 = 1 / 3,6$ Dabei darf s_{r.max} nach Gleichung (7.11) mit

$$\boldsymbol{S}_{r,max} \leq \frac{\sigma_s \cdot \phi}{\boldsymbol{3,6} \cdot \boldsymbol{f}_{ct,eff}}$$

und bei Betonstahlmatten auf maximal zwei Maschenweiten begrenzt werden.

Normtextänderungsvorschlag: Kein Änderungsvorschlag.

4.3 Rissbreite

In den Versuchen hat sich allgemein bestätigt, dass die Gleichungen gemäß /1/ und /2/ Rissbreiten bei kleinen Stahlspannungen unterschätzen. Der Bereich einer Angleichung zwischen dem Rechenwert der Rissbreite und den Fraktilwerten der Rissbreiten der Versuche zeigt sich bei ca. 360N/mm². Darüber hinaus überschätzt die Gleichung gemäß /1/ und /2/ die Rissbreiten in den Versuchen.

Die in den durchgeführten Versuchen der Serie 1 gemessenen Rissbreiten überschreiten nahezu bei allen aufgebrachten Stahlspannungen den Rechenwert der Rissbreite gemäß /1/ und /2/. Diese Beobachtung kann durch die erhöhten Rissabstände der Versuchsserie sowie bei den kleinen Stabdurchmessern durch die sehr geringen Rissbreiten erklärt werden. Eine Erhöhung des rechnerischen Rissabstandes, z.B. durch den Faktor η_2 gemäß /1/ und /2/ (Verbundfestigkeit) kann dieser Abweichung entgegenwirken. Da jedoch dieses Verhalten nur bei unrealistisch großen Bewehrungsgehalten auftritt sollte im Allgemeinen hierauf verzichtet werden.

Die Versuchsserien 5 und 6 wurden gemäß /1/ und /2/ mit 2% der externen Betonzugfläche als rissbreitenbeschränkende Oberflächenbewehrung ausgeführt. In diesen Versuchen zeigten sich bis zu einer Stahlspannung von ca. 360N/mm² lediglich Rissbreiten kleiner 0,2mm. In Tabelle 3-1 wird als maximale Anforderung der Rissbreite 0,2mm vorgeschlagen. Da diese Anforderung bei den Versuchen der Serien 5 und 6 bereits bis zur Stahlspannung von 360N/mm² eingehalten ist, wird vorgeschlagen, dass auf einen rechnerischen Nachweis verzichtet werden kann, wenn gemäß /1/ und /2/ die rissbreitenbeschränkende Oberflächenbewehrung mit 2% der externen Betonzugfläche bestimmt wird.

In den Serien 3 und 4 wurde eine alternative Bewehrungsregel der rissbreitenbeschränkenden Oberflächenbewehrung überprüft. Die Versuchskörper der Serien 3 und 4 wurden lediglich mit der Hälfte der gemäß /1/ und /2/ nötigen rissbreitenbeschränkenden Oberflächenbewehrung ausgeführt. In diesen Versuchen wurden Rissbreiten bis zu einer Stahlspannung von 360N/mm² von lediglich 0,3mm beobachtet. Selbst bei einer Stahlspannung von 450N/mm² erreichte der Fraktilwert der Rissbreite nicht 0,4mm und blieb somit in dem geforderten Rissbreitenbereich von /1/ und /2/.

Daher wird vorgeschlagen, dass ebenfalls auf einen rechnerischen Rissbreitennachweis verzichtet werden darf, wenn die Anforderung an die Rissbreite $w_{max} \ge 0.3mm$ nach Tabelle 3-1 gefordert wird und die mittleren Stahlspannungen $\le 360N/mm^2$ bleiben.

In den Versuchen der Serie 3 – 7 zeigt sich bis zu einer Stahlspannung von ca. $360N/mm^2$, dass die rechnerischen Rissbreiten w_k kleiner Werte liefern als in den Versuchen beobachten wurden und damit diese unterschätzt werden. Eine Bemessung mit den Gleichungen gemäß /1/ und /2/ erzeugt damit kleinere, auf der "unsicheren Seite" liegenden, Rissbreiten. Eine Anpassung der Rissbreitengleichung bei der Verwendung großer Stabdurchmesser ist somit erforderlich.

/1/ Anhang J.1 (2):

ANMERKUNG Der landesspezifische Wert $A_{s,surfmin}$ darf einem Nationalen Anhang entnommen werden. Der empfohlene Wert ist 0,01· $A_{ct,ext}$. Dabei ist $A_{ct,ext}$ die Querschnittsfläche des Betons unter Zug außerhalb der Bügel (siehe Bild J.1).

/2/ NCI zu J.1 (1):

Die Durchmesser der Oberflächenbewehrung sollten $\phi \le 10$ mm betragen. Zu Bild J.1: Es gilt $A_{s,surf} \ge 0,02 \cdot A_{ct,ext}$

/2/ NDP zu J.1 (2) Oberflächenbewehrung:

 $A_{s,surfmin} \ge 0,02 \cdot A_{ct,ext}$

Normtextänderungsvorschlag:

Auf einen rechnerischen Nachweis der Rissbreite darf verzichtet werden, wenn $A_{s,surf} \ge 0,02 \cdot A_{ct,ext}$ ist und der Rechenwert der Rissbreite $w_{max} \ge 0,2mm$ ist.

Ebenfalls darf auf einen rechnerischen Nachweis verzichtet werden, wenn $A_{s,surf} \ge 0,01 \cdot A_{ct,ext}$ ist und der Rechenwert der Rissbreite $w_{max} \ge 0,3mm$ ist.

Für $w_{max} \le 0.3mm$ und $0.02 \cdot A_{ct,ext} > A_{s,surf} \ge 0.01 \cdot A_{ct,ext}$ ist bei dem rechnerischen Nachweis der Rissbreite der Faktor $k_{\phi_{Large}}$ wie folgt anzusetzen.

$$\boldsymbol{W}_{k,Large} = \boldsymbol{W}_k \cdot \boldsymbol{K}_{\phi Large} \tag{3.15}$$

$$k_{\text{pLarge}} = (3,9 \cdot f_{\text{ck}} - 84) \cdot \sigma_s^{(-0,01 \cdot f_{\text{ck}} - 0,3)}; 80 \le \sigma_s \le 450; 30 \le f_{\text{ck}} \le 50$$
(3.16)

In den Serien 3 und 4 sowie 5 und 6 wurde die gemäß /1/ und /2/ anzusetzende kreuzende Oberflächenbewehrung (Bügel) überprüft. Gemäß /1/ und /2/ muss diese der rissbreitenbeschränkenden Oberflächenbewehrung, also ebenfalls 2% der externen Betonzugfläche, entsprechen. Ausgeführt wurden diese Bügel lediglich in Serie 5. In Serie 3 wurden sowohl die rissbreitenbeschränkende Oberflächenbewehrung also auch die Bügelbewehrung mit 1% der externen Betonzugfläche bestimmt. In den Serien 4 und 6 wurde die kreuzende Oberflächenbewehrung aus der Mindestbügelbewehrung gemäß /2/ NA15 zur Sicherstellung des Verbundes berechnet. Hierdurch wurde erheblich an der kreuzenden Oberflächenbewehrung eingespart. Anstatt ϕ 10-6,4cm (12,3cm²/m) konnte in den Versuchen der Serie 4 und 6 eine Bügelbewehrung von ϕ 6-20cm (1,4cm²/m) angesetzt werden. Die Ergebnisse der Versuche zeigen sowohl in den Rissabständen als auch in den Rissbreiten keinen deutlichen Einfluss zwischen den abweichenden Bügelbewehrungen der Serien 3 und 5. Auch sich unbegrenzt öffnende Spaltrisse wurden in keinem Versuch beobachtet. Da zur Zeit noch nicht abschließend geklärt werden konnte, ob die Bügel der Oberflächenbewehrung in einem anderen Bemessungsnachweis angerechnet werden, wird vorgeschlagen mindestens 1% der externen Betonzugfläche A_{ct,ext} als kreuzende Oberflächenbewehrung anzusetzen.

/1/ Anhang J.1 (2):

Die Querschnittsfläche der Oberflächenbewehrung $A_{s,surf}$ muss in der Regel in den zwei Richtungen parallel und orthogonal zur Zugbewehrung des Balkens mindestens $A_{s,surfmin}$ betragen.

Normtextänderungsvorschlag: Die Querschnittsfläche der kreuzenden Oberflächenbewehrung (Bügel) *a*_{sw,surf} muss mindestens 0,01·A_{ct,ext} betragen.

5 Literatur

- /1/ Deutsches Institut f
 ür Normung e.V.: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln f
 ür den Hochbau; Deutsche Fassung EN 1992-1-1:2004 + AC:2010 (2011) DIN EN 1992-1-1. Berlin.
- /2/ Deutsches Institut für Normung e.V.: Nationaler Anhang National festgelegte Parameter Eurocode
 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken Teil 1-1: Allgemeine
 Bemessungsregeln und Regeln für den Hochbau (2013) DIN EN 1992-1-1/NA. Berlin.
- /3/ Deutsches Institut für Normung e.V.: Tragwerke aus Beton, Stahlbeton und Spannbeton Teil 1: Bemessung und Konstruktion (2008) DIN 1045-1. Berlin.
- /4/ Fingerloos, F.; Hegger, J.; Zilch, K.: Der Eurocode 2 f
 ür Deutschland. Kommentierte und konsolidierte Fassung. DIN EN 1992-1-1 Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken
 - Teil 1-1 Allgemeine Regeln f
 ür den Hochbau, 1., Auflage. Berlin 2010.
- /5/ Deutscher Ausschuss für Stahlbeton e.V. (Hrsg.): Füllen von Rissen und Hohlräumen in Betonbauteilen. Berlin 2006.
- /6/ Deutscher Ausschuss für Stahlbeton e.V. (Hrsg.): Erläuterungen zu DIN 1045-1. Berlin 2003.
- /7/ Deutscher Beton- und Bautechnik-Verein E.V. (DBV) (Hrsg.): Begrenzung der Rissbildung im Stahlbeton- und Spannbetonbau. Berlin 1996.
- /8/ Comité Euro-International du Béton: Design Code. Design code (1990) CEB-FIB Model Code. London.
- /9/ Deutscher Beton- und Bautechnik-Verein E.V. (DBV) (Hrsg.): Begrenzung der Rissbildung im Stahlbeton- und Spannbetonbau. Berlin 2006.
- /10/ Eckfeldt, L.: Möglichkeiten und Grenzen der Berechnung von Rissbreiten in veränderlichen Verbundsituationen, Dissertation. Dresden 2005.
- /11/ Deutsches Institut f
 ür Normung e.V.: Eurocode 0: Grundlagen der Tragwerksplanung (2010) DIN EN 1990. Berlin.
- /12/ Deutsches Institut f
 ür Normung e.V.: Statistische Auswertung von Daten Teil 6: Ermittlung von statistischen Anteilsbereichen (2009) DIN ISO 16269-6. Berlin.
- /13/ Deutsches Institut f
 ür Normung e.V.: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln f
 ür den Hochbau; Deutsche Fassung EN 1992-1-1:2004/prA1:2013 (2013) DIN EN 1992-1-1/A1. Berlin.
- /14/ Deutscher Beton- und Bautechnik-Verein E.V. (DBV) (Hrsg.): Was hat die Festlegung fct,eff<0,5fctm mit Rissen in Betonbauteilen zu tun? Welche Risiken und Verantwortlichkeiten folgen daraus f
 ür die am Bau Beteiligten. Berlin 2014.
- /15/ Deutsches Institut f
 ür Normung e.V.: Beton und Stahlbeton, Bemessung und Ausf
 ührung (1988) DIN 1045. Berlin.
- /16/ Deutsches Institut f
 ür Normung e.V.: Tragwerke aus Beton, Stahlbeton und Spannbeton (2001) DIN 1045-1. Berlin.
- /17/ Deutsches Institut f
 ür Bautechnik: Betonstabstahl BSt 500S Nenndurchmesser 40,0mm (1998) Z-1.1-78. Berlin.

- /18/ Deutsches Institut f
 ür Normung e.V.: Betonstahl Teil 1: Stahlsorten, Eigenschaften, Kennzeichnung (2009) DIN 488-1. Berlin.
- /19/ Deutsches Institut für Normung e.V.: Betonstahl Betonstabstahl (2009) DIN 488-2. Berlin.
- /20/ Metric PE Plus: M-Service & Geräte Peter Müller e.K. Mess-Software Version 8.10.
- /21/ Catman Version 4.5: Hottigner Baldwin Messtechnik GmbH. Messwerterfassungsprogramm.

6 Anhang

Schlussbericht zum AiF Forschungsvorhaben 16992 N

Weiterentwicklung von Bemessungsund Konstruktionsregeln bei großen Stabdurchmessern (> Ø32 mm, B500)

Tragverhalten von Druckgliedern

Martin Empelmann

Vincent Oettel
1	AUSGANGSFRAGEN UND ZIELSETZUNG	3
1.1	Einleitung	3
1.2	Stand der Normung und der Technik	4
1.3	Forschungsziel	5
2	VERSUCHSPROGRAMM	6
2.1	Versuchsserien	6
2.2	Versuchskörper	6
2.3	Versuchsaufbau und Versuchsdurchführung	8
3	ERGEBNISSE	10
3.1	Allgemeines	10
3.2 3.2.1 3.2.2 3.2.3 3.2.4	Serie S 0 – Referenzversuche mit Längsbewehrung Ø20 Konfiguration der Versuchskörper Experimentelle Ergebnisse Rechnerische Beurteilung der Versuche Zusammenfassung	11 11 11 13 13
3.3 3.3.1 3.3.2 3.3.3 3.3.4	Serie S 1 – Versuche zur Mindestbauteilabmessung Konfiguration der Versuchskörper Experimentelle Ergebnisse Rechnerische Beurteilung der Versuche Zusammenfassung und Erkenntnisse	14 14 15 16 17
3.4 3.4.1 3.4.2 3.4.3 3.4.4	Serie S 2 – Versuche zum Einfluss der Bügelbewehrung Konfiguration der Versuchskörper Experimentelle Ergebnisse Rechnerische Beurteilung der Versuche Zusammenfassung und Erkenntnisse	18 18 18 21 21
3.5 3.5.1 3.5.2 3.5.3 3.5.4	Serie S 3 – Versuche zur zulässigen Stabanzahl je Bügelecke Konfiguration der Versuchskörper Experimentelle Ergebnisse Rechnerische Beurteilung der Versuche Zusammenfassung und Erkenntnisse	22 22 23 25 25
3.6 3.6.1 3.6.2 3.6.3 3.6.4	Serie S 4 – Versuche zur Druckstoßausbildung Konfiguration der Versuchskörper Experimentelle Ergebnisse Rechnerische Beurteilung der Versuche Zusammenfassung und Erkenntnisse	26 26 28 30 30
4	VORSCHLAG FÜR KONSTRUKTIONSREGELN	32
4.1	Form	32
4.2	Beton	32
4.3	Querbewehrung	32
4.4	Längsbewehrung	32
4.5	Zusammenfassung der Vorschläge	33
5	ZUSAMMENFASSUNG	34
6	OFFENE FRAGEN	35
7	LITERATURVERZEICHNIS	36
	ANHANG	37

1 Ausgangsfragen und Zielsetzung

1.1 Einleitung

Die Verwendung von Betonstählen mit großen Durchmessern > Ø32 mm kann bei Druckgliedern aus mehreren Gründen sinnvoll sein. So lässt sich z. B. bei stark beanspruchten und damit hoch bewehrten Stahlbetonstützen eine signifikante Vereinfachung in der Bewehrungsführung erzielen, weil bei gleichem Stahlbedarf die Anzahl der Längsbewehrungsstäbe verringert wird. Hierdurch reduzieren sich zum einen die kostenintensiven Verlegearbeiten und es ergeben sich aufgrund der größeren Stababstände ausführungstechnische Vorteile beim Betonieren und Verdichten /1/.

Bild 1-1 zeigt exemplarisch zwei Stahlbetonstützen 24/24 cm mit einer konstruktiven Bewehrungsausführung mit 8 Ø28 mm ($A_s = 49.3 \text{ cm}^2$) und mit 4 Ø40 mm ($A_s = 50.3 \text{ cm}^2$) im Vergleich.

Darüber hinaus kann eine vereinfachte Bewehrungsausführung auch zu einer Neubewertung des maximal zulässigen Bewehrungsgrades von 9 % (gemäß aktueller Norm) führen, so dass sich dann höhere Tragfähigkeiten bei gleichbleibenden Stützenabmessungen realisieren lassen würden. Anderseits könnten bei gleicher Traglast durch die Verwendung von großen Stabdurchmessern die äußeren Stützenabmessungen verringert und damit schlankere, architektonisch anspruchsvollere Stützen erzielt werden /2/.

Bild 1-2 zeigt drei Ausführungsbeispiele von 3,5 m hohen Stahlbetonstützen aus C30/37 und B500 mit der gleichen Traglast, in einer Ausführung mit 4 Ø20 mm (= 12,6 cm²), 16 Ø20 mm (= 50,2 cm²) und 4 Ø40 mm (= 50,3 cm²). Wird der Beton durch Betonstahlbewehrung ersetzt, kann aufgrund der etwa 22-fach höheren Stahlfestigkeit mehr als 50 % des Stützenquerschnitts eingespart und eine um mehr als 45 % höhere Stützenschlankheit realisiert werden. Bei der unten abgebildeten mittleren Stütze mit Stabbündeln treten jedoch komplexe und aufwändige Stoß- und Übergreifungskonstruktionen auf, die mit großen Stabdurchmessern vermieden werden (siehe Stütze rechts).

1.2 Stand der Normung und der Technik

DIN EN 1992-1-1 /3/ in Verbindung mit dem nationalen Anhang DIN EN 1992-1-1/NA /4/ (nachfolgend als EC2+NA bezeichnet) regelt unter Abschnitt 9.5 die konstruktive Durchbildung von Stahlbetonstützen.

Im Gegensatz zur DIN 1045-1 /5/, welche eine Verwendung von Betonstahlstäben mit einem Nenndurchmesser von Ø6 mm bis Ø32 mm erlaubte, kann nach EC2+NA die Längs- bzw. Druckbewehrung in Stützen mit Betonstahlstäben bis Ø40 mm ausgeführt werden.

Bei Verwendung von Ø40 mm müssen jedoch nach EC2+NA zusätzliche Regelungen beachtet werden.

Die in EC2+NA enthaltenen Sonderregelungen für Ø40 mm beruhen auf der Übertragung der normativen Konstruktionsregeln für Stabbündel sowie auf der Übernahme der besonderen Konstruktionsregeln aus der Allgemeinen bauaufsichtlichen Zulassung (AbZ) Z-1.1-106 /6/. Eine systematische Untersuchung zur Herleitung verbesserter Konstruktionsregeln für Stützen mit Durchmesser > Ø32 mm fehlt bisher.

In Tabelle 1-1 sind die wichtigsten Konstruktionsregeln für Stützen nach EC2+NA und der AbZ Z-1.1-106 zusammengefasst und für eine spätere eindeutige Zuordnung durchnummeriert (Regel A bis I).

EC2			NA	AbZ	
	Erläuterung Ø12 – Ø32 mm		Zusatz für Ø40 mm	Ø40 mm	Regel
Form	mind. Bauteildicke	$min(h,b) \ge \begin{cases} 200 \ mm \\ 120 \ mm \ (FT) \end{cases}$	$min(h, b) \ge 15 \cdot \phi_l$	$min(h, b) \ge 15 \cdot \phi_l$	A
ton	mind. Beton- festigkeitsklasse	C16/20		C20/25	В
Be	max. Beton- festigkeitsklasse	C100/115		C60/75	С
Jew.	mind. Durch- messer	$\phi_w \ge \begin{cases} 6 \ mm \\ 0,25 \cdot \phi_l \end{cases}$	$\phi_w \ge 12 \ mm$	$\phi_w \ge 12 \ mm$	D
Bügelt	max. Abstand – allgemein	$s_{cl,tmax} \leq \begin{cases} 12 \cdot \phi_l \\ min(h,b) \\ 300 \ mm \end{cases}$	$s_{cl,tmax} \leq \begin{cases} \min(h/2, b/2) \\ 300 \ mm \end{cases}$	$s_{cl,tmax} \leq \begin{cases} \min(h/2, b/2) \\ 300 \ mm \end{cases}$	E
	max. Querschnitts- fläche	$A_{s,max} = 0,09 \cdot A_c$			F
sbew.	max. Anzahl je Ecke	5		1	G
Läng	max. Abstand zur Ecke	$s_{ct,lmax} \le 15 \cdot \phi_w$		nicht zulässig	Н
	Übergreifungsstoß	zulässig	nicht zulässig	nicht zulässig	I

Tabelle 1-1: Konstruktionsregeln für Stützen nach EC2+NA und AbZ

Bei einer Analyse der Konstruktionsregeln in Tabelle 1-1 ergeben sich folgende Fragen und Ansatzpunkte für weitergehende Untersuchungen:

- Bei Ø40 mm ist ein "Sprung" in der Mindestbauteildicke vorhanden (Regel A), der in dieser Größenordnung nicht nachzuvollziehen und experimentell auch nicht abgesichert ist /8/.
- Die zulässigen, maximalen Betonfestigkeitsklassen (Regel C) weichen deutlich voneinander ab. Insbesondere die Festlegung auf C60/75 in der AbZ ist für eine baupraktische Anwendung von großen Durchmessern stark einschränkend. Allerdings ist auch bekannt, dass Stützen aus Hochleistungsbetonen nach Überschreiten der Traglast äußerst spröde versagen. Eine Erweiterung auf Betone C100/115 ist, insbesondere im Hinblick auf die Robustheit bzw. das Nachbruchverhalten, experimentell nicht abgesichert.
- Im Zusammenhang mit der Duktilität ist eine Umschnürungsbewehrung in Form von Bügeln von besonderer Bedeutung, um ein frühzeitiges, seitliches Ausknicken der Betonstähle bei größeren Bügelabständen zu verhindern. Hierbei sind Stabdurchmesser und Bewehrungsgrad der Längsbewehrung die maßgebenden Eingangsgrößen zur Bestimmung der erforderlichen Bügelbewehrungsmenge und der Bügelabstände (Regel D und E). Bei einer Längsbewehrung aus großen Stäben (> Ø32 mm) fehlt eine Absicherung dieser Zusammenhänge durch Bauteilversuche.
- Die Angaben zum maximalen Bewehrungsgehalt (Regel F) können im Grunde nur mit baupraktischen Gesichtspunkten, wie z. B. dem Einbringen und Verdichten des Betons, gerechtfertigt werden. Durch die Verwendung von großen Stabdurchmessern kann aber der maximale Bewehrungsgehalt gesteigert werden, ohne gleichzeitig die Einbaubedingungen zu verschlechtern (siehe z. B. Megastützen in /7/). Insofern bedürfen die Angaben zum maximalen Bewehrungsgehalt für deren Anwendung auf große Stabdurchmesser ebenfalls einer experimentellen Überprüfung.
- Bei Stützen mit polygonalem Querschnitt muss in jeder Ecke mindestens ein Längsstab angeordnet werden. Weitere Längsstäbe sind über den Querschnitt zu verteilen, wobei maximal 5 Stäbe in oder in der Nähe jeder Bügelbewehrungsecke gegen Ausknicken gesichert werden können (Regel G). Desweiteren darf der Abstand der Längsstäbe vom Eckbereich den 15-fachen Bügeldurchmesser nicht überschreiten (Regel H). Andernfalls ist eine zusätzliche Querbewehrung anzuordnen. Im Gegensatz dazu müssen nach der AbZ die Längsstäbe in einer Bügelecke angeordnet werden, bzw. kann maximal ein Längsstab durch die Bügelbewehrungsecke gegen Ausknicken gesichert werden. Auch dieser Sachverhalt bedarf bei einer Längsbewehrung aus großen Stäben (> Ø32 mm) einer Absicherung durch Bauteilversuche.
- Neben den o. g. Aspekten zur Gewährleistung eines sicheren und duktilen Tragverhaltens ist aber auch die konstruktive Durchbildung von Bewehrungsstößen zu beachten. Bei Geschossstützen aus Ortbeton stellt der Übergreifungsstoß als Druckstoß die übliche Konstruktionsmethode dar (Regel I). Für große Bewehrungsdurchmesser sind hier grundlegende Untersuchungen erforderlich. Hierbei sollte auch eine versetzte Stoßausbildung betrachtet werden.

1.3 Forschungsziel

Zur Klärung der o.g. Fragestellungen wurden experimentelle und theoretische Untersuchungen an Druckgliedern aus normal- und hochfestem Beton mit Rechteckquerschnitt und Längsbewehrungsstäben Ø40 mm durchgeführt.

Hierbei sollten vorrangig folgende Punkte betrachtet werden:

- Mindestbauteildicke (Regel A und F)
- Minimale und maximale Betonfestigkeitsklasse (Regel B und C)
- Bügeldurchmesser und Bügelabstände (Regel D und E)
- Maximale Anzahl von Längsstäben je Bügelecke (Regel G und H)
- Druckstöße und Bewehrungsgrad (Regel I und F)

Ziel der Untersuchungen war es, experimentell abgesicherte Erkenntnisse zu erhalten, mit denen ggf. eine Anpassung bzw. eine zutreffende Formulierung von Konstruktionsregeln zur Anwendung von Ø40 mm als Längsbewehrung in Druckgliedern möglich ist.

2 Versuchsprogramm

2.1 Versuchsserien

Entsprechend des o.g. Forschungsziels wurde das Versuchsprogramm in die nachfolgenden Arbeitspakete bzw. Versuchsserien unterteilt:

- Serie S 1 Versuche zur Mindestbauteilabmessung
- Serie S 2 Versuche zum Einfluss der Bügelbewehrung
- Serie S 3 Versuche zur zulässigen Stabanzahl je Bügelecke
- Serie S 4 Versuche zur Druckstoßausbildung

2.2 Versuchskörper

Die experimentellen Untersuchungen erfolgten an rechteckförmigen Stützen entsprechend Bild 2-1.

Die Abmessungen der Versuchskörper betrugen

- b/h = 24/24 cm bei der Serie S 0 und S 1,
- b/h = 36/36 cm bei der Serie S 2 und S 4 und
- b/h = 60/24 cm bei der Serie S 3.

Die Länge der Versuchskörper wurde bei der Serie S 0 bis S 3 mit L = 150 cm und bei der Serie S 4 mit L = 206 cm so gewählt, dass die Stützen nach EC2+NA Abschnitt 5.8.3.1 entsprechend ihrer Schlankheit als "gedrungen" eingeordnet ($\lambda \le \lambda_{lim} = 25$) und ein Stabilitätsversagen ausgeschlossen werden konnte.

Zur Erhöhung der Tragfähigkeit bzw. zur besseren Krafteinleitung wurde an beiden Versuchskörperenden ein höherer Bügelbewehrungsgrad angeordnet. Als Lasteinleitungsbereich wurde die halbe Querschnittshöhe h gewählt, was in etwa dem Bereich der Querdehnungsbehinderung entspricht. Der eigentliche Prüfbereich der Stütze erstreckte sich damit über den mittleren Stützenbereich.

Die Betondeckung auf der Längsbewehrung wurde für die Versuchsserie S 1 bis S 4 gemäß EC2+NA Abschnitt 4.4.1.2 zur Sicherstellung des Verbunds zu $c_{min,b} = 1 \cdot \phi_l = 4,0 cm$ gewählt und aus Vergleichsgründen auch bei der Versuchsserie S 0 angesetzt. Eine Berücksichtigung von ggf. erhöhten Betondeckungen zum Schutz gegen Bewehrungskorrosion oder Betonangriff erfolgte nicht, da ausschließlich das Tragverhalten von Stützen bzw. das Ausknicken der Längsbewehrung Gegenstand der Untersuchungen war.

Bild 2-1: Querschnittsabmessungen der Versuchskörper der einzelnen Serien

Zur Variation der Betonfestigkeit wurden in den Untersuchungen die Betonfestigkeitsklassen C30/37, C50/60 oder C100/115 angestrebt. In Abstimmung mit dem projektbegleitenden Ausschuss wurde als Gesteinskörnung ein Rheinkies mit maximal 16 mm Größtkorn gewählt.

Die jeweils verwendete Betonmischung kann Tabelle 2-1 entnommen werden.

Da nur Rheinkies und kein Splitt verwendet werden sollte, musste bei der Betonmischung für eine angestrebte Betonfestigkeitsklasse C100/115 ein Zusatzmittel auf PCE-Basis (Kombination aus Fließmittel und Erhärter) eingesetzt und die Gesteinskörnung getrocknet werden.

- \rightarrow 3 Versuche (S 0.1 bis S 0.3)
- \rightarrow 3 Versuche (S 1.1 bis S 1.3)
- \rightarrow 6 Versuche (S 2.1 bis S 2.6)
- \rightarrow 6 Versuche (S 3.1 bis S 3.6)
- \rightarrow 5 Versuche (S 4.1 bis S 4.5)

Bezeichnung		C30/37	C50/60	C100/115
Gesteinskörnung 0/2 mm	[kg/m³]	609	605	634
Gesteinskörnung 2/8 mm	[kg/m³]	612	605	273
Gesteinskörnung 8/16 mm	[kg/m³]	680	681	899
Zement CEM I / 42,5 N	[kg/m³]	292	-	-
Zement CEM I / 52,5 R Premium	[kg/m³]	-	375	450
Wasser	[kg/m³]	175	150	117
Zusatzstoff Flugasche	[kg/m³]	-	-	100
Zusatzmittel Glenium 51	[kg/m³]	-	-	13,5

Tabelle 2-1: Verwendete Betonmischungen

Die Versuchskörper wurden liegend in einer beschichteten Holzschalung betoniert (Bild 2-2). Bei der liegenden Betonage tritt ggf. eine Abschirmung durch die großen Durchmesser und damit ein schlechterer Verbund bei der Längsbewehrung auf, so dass dies den ungünstigsten Untersuchungsfall darstellt. Diese Form der Betonage entspricht zudem der üblichen Praxis zur Herstellung von Fertigteilstützen, wo ein verstärkter Einsatz von Längsbewehrung Ø40 mm aufgrund des Gewichts der Bewehrung in Kombination mit einer fest installierten Krananlage denkbar ist. Desweiteren konnten die Kabel der Messelektronik (Dehnmessstreifen (DMS) auf der Bewehrung) einfacher aus der Schalung geführt werden.

Das Verdichten erfolgte mit einer Rüttelflasche bzw. aufgrund des sehr geringen Bügelabstands bei Versuch S 4.3 mit Außenrüttlern.

Bild 2-2: Herstellung eines Versuchskörpers der Serie S 2 (a) und b)) und S 3 (c) und d))

Nach dem Betonieren wurden die Versuchskörper mit Folie abgedeckt, nach sieben Tagen ausgeschalt und anschließend bei Raumtemperatur in der Prüfhalle des iBMB gelagert.

Zur Ermittlung der Festbetoneigenschaften wurden gemeinsam mit den Versuchskörpern verschiedene Begleitkörper hergestellt und wie die Versuchskörper nachbehandelt und gelagert. Je Versuchskörper wurden in Anlehnung an /9/

- die Würfeldruckfestigkeit *f*_{cm,cube} an drei Würfeln 15/15/15 cm,
- die Zylinderdruckfestigkeit $f_{cm,cyl.}$ an drei Zylindern Ø15/30 cm und
- die Spaltzugfestigkeit $f_{ct,sp}$ an drei weiteren Zylindern Ø15/30 cm

versuchsbegleitend bestimmt. Die Ermittlung des Druck-E-Moduls E_{cm} erfolgte an drei Zylindern Ø15/30 cm in Anlehnung an /10/.

Die Festbetoneigenschaften der einzelnen Versuche kann Tabelle A1-1 im Anhang A1 entnommen werden.

Als Bügel- und Längsbewehrung wurde einheitlich B500 eingebaut.

Die Zugfestigkeitsprüfungen der Bügel- und Längsbewehrung erfolgten nach /11/ und die Bestimmung der bezogenen Rippenfläche f_{Rm} nach /12/. Die an jeweils drei Materialproben gewonnenen mittleren Kennwerte der verwendeten Betonstahlbewehrung je Versuchsserie können Tabelle A1-2 und Tabelle A1-3 im Anhang A1 entnommen werden.

Zusätzlich zu den Zugprüfungen wurden an Materialproben der verwendeten Längsbewehrung auch Druckprüfungen durchgeführt. Die Proben hatten hierbei eine Höhe von $3\phi_l$ und wurden im Bereich der beiden Längsrippen mit jeweils einem Stahl-DMS bestückt. Die Prüfung erfolgte kraftgeregelt in einem Druckprüfer an jeweils drei Proben je Versuchsserie. Bild 2-3 zeigt den Versuchsaufbau sowie die mittlere Druckspannungs-Dehnung-Linie aus je drei Proben der einzelnen Serien inklusive Mittelwertlinie (= schwarze Linie) sowie eine in Anlehnung an EC2+NA ermittelte Normlinie (= rote Linie).

Bild 2-3: Versuchsaufbau der Stahldruckprüfung (links) und Druckspannungs-Dehnungs-Linie (rechts) der Längsbewehrung Ø20 mm und Ø40 mm

2.3 Versuchsaufbau und Versuchsdurchführung

In Abhängigkeit der geschätzten Traglast und der äußeren Stützenabmessungen wurden die Stützen entweder im 10-MN-Druckprüfer (Serie S 0, Serie S 1, S 2.1 bis S 2.4 und Serie S 4) oder aber im 30-MN-Druckprüfer (S 2.5, S 2.6 und Serie S 3) geprüft (Bild 2-4).

Bild 2-4: Versuchsaufbau im 10-MN-Druckprüfer (a) und b)) und im 30-MN-Druckprüfer (c) und d))

Bis auf die beiden letzten Versuche der Serie S 4 (S 4.4 und S 4.5), welche unter zentrischem Längsdruck getestet wurden, erfolgten die Untersuchungen unter einachsig exzentrischem Längsdruck. Hierzu wurden ober- und unterhalb der exzentrisch zur Maschinenachse eingebauten Stützen Linienkipplager angeordnet. Die Exzentrizität bzw. die Anfangsausmitte wurde in Anlehnung an EC2+NA Abschnitt 5.2 zu $e_0 = 1,0 cm$ gewählt.

Die Stützen wurden so in die Prüfmaschinen eingebaut, dass die Betonieroberseite (mit den vermeintlich schlechteren Betoneigenschaften und Verbundbedingungen) die am stärksten gedrückte Seite war (siehe Bild 2-5 rechts).

Vor dem Versuch wurden die Stirnflächen der Versuchskörper plangeschliffen und die Längsbewehrung hierbei freigelegt. Abweichend von dieser allgemeinen Vorgehensweise wurde bei der Versuchsserie S 4 die Längsbewehrung an hochfesten Stahlplatten angeschweißt (Kontaktstoß), da die Versuchskörper für ein Planschleifen zu lang waren und die gestoßene Längsbewehrung während der Betonage besser in Lage gehalten werden konnte.

Bild 2-5: Lage der Beton- und Stahl-DMS (links) sowie Anordnung der Wegaufnehmer (rechts) exemplarisch für den Versuchskörper S 2.2

In Stützenlängsrichtung wurden, neben der Prüfkraft und dem Kolbenweg, die Stauchung des Versuchskörpers je Querschnittsseite über mittig angeordnete Wegaufnehmer (WA) aufgenommen. Außerdem wurde die horizontale Auslenkung in der planmäßigen Ausknickrichtung und in der gegenüberliegenden Seite durch je drei WA (in Stützenmitte und in den beiden Drittelspunkten) erfasst.

Die Messung der Betonlängs- und der Betonquerdehnung erfolgte je Querschnittsseite in Stützenmitte über applizierte Kreuz-DMS. Desweiteren wurde die Betonquerdehnung im Bereich der Bügel und zwischen zwei Bügeln an ausgewählten Stellen mittels DMS gemessen. Die Erfassung der Betonstahldehnungen erfolgte für die Längsbewehrung in Stützenmitte und an ausgewählten Bügeln über applizierte DMS. Die Lage der Beton- und Stahl-DMS sowie die Anordnung der Wegaufnehmer zeigt Bild 2-5 exemplarisch am Versuchskörper S 2.2. Die DMS-Lagen für alle Versuchskörper können dem Anhang entnommen werden.

Die Versuche wurden mit weggeregelter Belastungssteuerung geprüft, wobei der aufgebrachte Weg bis zu etwa 60 % der erwarteten Höchstlast (bzw. bei der Versuchsserie S 4 bis zu etwa 50 %) mit einer Wegzunahme von 0,025 mm/s gesteigert wurde. Anschließend wurde die Wegzunahme auf den Wert von 0,005 mm/s reduziert. Hierdurch war es möglich, alle Stützenversuche über die Höchstlast hinaus zu prüfen (Nachbruchbereich).

3 Ergebnisse

3.1 Allgemeines

Nachfolgend werden je Versuchsserie die Konfigurationen der Versuchskörper beschrieben und die experimentell bestimmten Versuchsergebnisse, wie z. B. die Betonstauchung ε_{c1} bei Höchstlast in Stützenmitte an der am stärksten gedrückten Querschnittsseite, dargestellt.

Neben einem "Kraft-Auslenkungs-Diagramm", welches die aufgebrachte Prüfkraft F zur horizontalen Mittenauslenkung v (= horizontaler WA in Stützenmitte an der Seite der planmäßigen Ausknickrichtung) zeigt, erfolgt die Ergebnisdarstellung auch mit einem bezogenen "Kraft-Verformungs-Diagramm".

Beim Kraft-Verformungs-Diagramm wird die Prüfkraft *F* auf die maximale Prüfkraft F_{max} und die vertikale Verformung w (= Kolbenweg) auf die vertikale Verformung w_{max} (= vertikale Verformung bei maximaler Prüfkraft F_{max}) bezogen. Mit dieser Darstellung kann das Nachbruchverhalten der Stütze quantifiziert bzw. eine Aussage über das verbleibende Sicherheitsniveau nach Überschreiten der maximalen Traglast getätigt werden. Definiert man in Anlehnung an /13/ für das Nachbruchverhalten eine maximal zulässige Verformung von $w/w_{max} = 1,33$, kann der Faktor $\beta_{1,33}$ bzw. die von der maximalen Traglast abhängige prozentuale Resttraglast abgelesen werden (Bild 3-1). Hat der Faktor $\beta_{1,33}$ einen Wert von 0,5, kann in Anlehnung an /14/ davon ausgegangen werden, dass bei einer unplanmäßigen Überschreitung der charakteristischen Traglast im Grenzzustand der Tragfähigkeit immer noch eine etwa 1,0-fache Sicherheit vorhanden ist. Tritt ein Faktor $\beta_{1,33}$ von kleiner 0,5 auf, ist das Versagen der Stütze im Hinblick auf das Sicherheitsniveau zunächst einmal als "kritisch" zu bewerten.

Bild 3-1: Ermittlung des Faktors $\beta_{1,33}$

Desweiteren erfolgte eine rechnerische Beurteilung der Versuche mit nichtlinearen Stabwerksberechnungen (Theorie II. Ordnung) gemäß EC2+NA Abschnitt 5.8.6. Hierzu wurden die Programme INCA2 und STAB2DNL /15/ verwendet, mit denen das Verhalten bis zum Erreichen der Traglast rechnerisch abgebildet werden konnte. Pro Versuch wurden jeweils zwei Nachrechnungen durchgeführt. In der Nachrechnung I wurden die Materialkennwerte aus den Begleitkörperprüfungen, in der Nachrechnung II aus Vergleichsgründen Normwerte und Idealisierungen verwendet (siehe Tabelle 3-1). Für die Druckarbeitslinie des Betons wurde die Spannungs-Dehnungs-Linie für nichtlineare Verfahren gemäß EC2+NA Abschnitt 3.1.5 angesetzt. Für die Druckspannungs-Dehnungs-Linie der Längsbewehrung wurde die in der Stahldruckprüfung ermittelte Mittelwertlinie (schwarze Linie in Bild 2-3 (links)) oder aber eine vereinfachte bilineare Spannungs-Dehnungs-Linie mit ansteigendem Ast in Anlehnung an EC2+NA Abschnitt 3.2.7 verwendet (rote Linie in Bild 2-3 (links)). Die angesetzten Werte je Versuchsnachrechnung können dem Anhang entnommen werden.

Tabelle 3-1:	Berechnungsparameter der	Nachrechnung	Lund der Nachrechnung II
	Dereennungspurumeter der	radineonnung	i unu uci riuoinconnung n

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit f _{cm,cyl.}	[N/mm ²]	Tabelle A1-1	Tabelle A1-1
E-Modul E _{cm}	[N/mm ²]	Tabelle A1-1	EC2+NA Tab. 3.1
Betongrenzdehnung ε_{c1}	[‰]	EC2+NA Tab. 3.1	EC2+NA Tab. 3.1
Betonbruchdehnung ε_{cu1}	[‰]	EC2+NA Tab. 3.1	EC2+NA Tab. 3.1
σ-ε-Linie Längsbewehrung	[-]	gemessene (Bild 2-3)	bilineare (Bild 2-3)

3.2 Serie S 0 – Referenzversuche mit Längsbewehrung Ø20

3.2.1 Konfiguration der Versuchskörper

Die experimentellen Referenzuntersuchungen erfolgten an drei Stahlbetonstützen S 0.1 bis S 0.3 (Bild 2-1). Tabelle 3-2 enthält eine Übersicht der Konfiguration der Versuchskörper (Prüfbereich).

Bezeichnung		S 0.1	S 0.2	S 0.3
Beton	[-]	C30/37	C30/37	C100/115
Abmessungen <i>b/h</i>	[cm]	24/24	24/24	24/24
Durchmesser Bügelbewehrung ϕ_w	[mm]	6	6	6
Abstand Bügelbewehrung s _{cl,t}	[cm]	24,0	24,0	24,0
Durchmesser Längsbewehrung ϕ_l	[mm]	20	20	20
Anzahl Längsbewehrung n	[Stk.]	4	8	4
Längsbewehrungsgrad $ ho_l$	[%]	2,2	4,4	2,2

 Tabelle 3-2:
 Konfiguration der Versuchskörper der Serie S 0

Die Konfiguration der Versuchskörper erfolgte auf Grundlage der Konstruktionsregeln nach EC2+NA (siehe Tabelle 1-1).

Die Bügelschlösser wurden bei S 0.1 und S 0.2 mit 90°-Haken und bei S 0.3 mit 135°-Winkelhaken ausgeführt. Abweichend zu den anderen Versuchsserien wurden die Schlösser entlang der Stützenlängsachse versetzt angeordnet.

3.2.2 Experimentelle Ergebnisse

Die Versuchskörper S 0.1 und S 0.2 versagten verhältnismäßig robust auf Betondruck, und nach Erreichen der maximalen Traglast konnte eine Resttragfähigkeit verzeichnet werden. Dagegen versagte der Versuchskörper S 0.3 schlagartig ohne Resttragfähigkeit, da der Betonquerschnitt völlig zerstört wurde (Scherbruch). Bild 3-2 zeigt die Bruchbilder der einzelnen Versuche nach Entfernen der losen Betonstücke.

Bild 3-2: Versuchskörper nach dem Versuch: a) und b) S 0.1, c) und d) S 0.2 sowie e) und f) S 0.3

Ein Ausknicken der Längsbewehrung trat sowohl bei S 0.1 und S 0.2 als auch bei S 0.3 in der Versagenszone auf. Die dort befindliche Bügelbewehrung blieb bei S 0.1 intakt, wurde bei S 0.2 verformt und bei S 0.3 zerrissen. Die Verformung der Bügelbewehrung bei S 0.2 trat durch das Ausknicken der mittleren Längsbewehrung auf, die nicht in der Bügelecke angeordnet war. Die Bügelschlösser blieben bei allen Versuchen geschlossen. Im Bild 3-3 (links) sind die im Versuch ermittelten Kraft-Auslenkungs-Beziehungen und in Bild 3-3 (rechts) die Kraft-Verformungs-Beziehungen dargestellt.

Bild 3-3: Kraft-Auslenkungs-Beziehungen (links) und bezogene Kraft-Verformungs-Verläufe (rechts)

Vergleicht man die Kraft-Verformungs-Verläufe der einzelnen Versuche (Bild 3-3 (rechts)), zeigt sich bei den normalfesten Stützen S 0.1 und S 0.2 auch im Nachbruchbereich ein ähnlicher Verlauf mit einem Faktor $\beta_{1,33}$ von nahezu 0,5. Demgegenüber geht der Faktor $\beta_{1,33}$ bei der hochfesten Stütze S 0.3 gegen Null.

Die Versuchsergebnisse und -beobachtungen sind zusammenfassend in Tabelle 3-3 dargestellt. Weitere Ergebnisse können dem Anhang entnommen werden.

Bezeichnung		S 0.1	S 0.2	S 0.3
Druckfestigkeit f _{cm,cyl.}	[N/mm ²]	33,3	33,3	86,1
Traglast F _{max}	[kN]	1.642,5	2.265,9	4.572,5
Mittenauslenkung v _{max}	[mm]	5,0	6,2	3,4
Betonstauchung ε_{c1}	[‰]	-1,9	-3,4	-3,3
Resttragfähigkeit $\beta_{1,33}$	[-]	0,46	0,45	0,02
Versagensart	[-]	robust	robust	schlagartig
Zustand Bügelbew.	[-]	intakt	verformt	gerissen
Zustand Bügelschloss	[-]	geschlossen	geschlossen	geschlossen
Zustand Längsbew.	[-]	ausgeknickt	ausgeknickt	ausgeknickt

Tabelle 3-3: Versuchsergebnisse und -beobachtungen der Serie S 0

3.2.3 Rechnerische Beurteilung der Versuche

Der Vergleich der experimentellen Ergebnisse mit den rechnerischen Kraft-Auslenkungs-Beziehungen bzw. den experimentellen und rechnerischen Traglasten der Serie S 0 lässt sich Bild 3-4 und Tabelle 3-8 entnehmen.

Bild 3-4: Experimentelle und rechnerische Kraft-Auslenkungs-Beziehungen der Versuchserie S 0: Nachrechnung I (links) und Nachrechnung II (rechts)

Bezeichnung		S 0.1	S 0.2	S 0.3
exp. Traglast F _{max,exp}	[kN]	1.642,5	2.265,9	4.572,5
rechn. Traglast F _{max,cal,I}	[kN]	1.850,0	2.230,0	4.250,0
$F_{max,exp}/F_{max,cal,I}$	[-]	0,89	1,02	1,08
rechn. Traglast F _{max,cal,II}	[kN]	1.950,0	2.370,0	4.350,0
F _{max,exp} /F _{max,cal,II}	[-]	0,84	0,96	1,05

Tabelle 3-4: Vergleich der experimentellen und rechnerischen Traglasten der Serie S 0

Der Vergleich von experimentellen und rechnerischen Traglasten zeigt, dass die Versuche S 0.2 und S 0.3 sowohl mit Nachrechnung I als auch mit Nachrechnung II gut nachvollzogen werden konnten. Versuch S 0.1 hingegen hat eine etwas zu große Abweichung von 11 % (Nachrechnung I) bzw. 16 % (Nachrechnung II). Es wird vermutet, dass die Stütze an der Betonieroberseite eine im Gegensatz zu den Begleitkörpern geringere Betondruckfestigkeit hatte. Dieses würde auch die im Vergleich zu S 0.2 geringere Betonbruchstauchung ε_c (siehe Tabelle 3-3) sowie der etwas zu steile rechnerische Kurvenverlauf (siehe Bild 3-4) erklären.

3.2.4 Zusammenfassung

Die Ergebnisse der Versuchsserie S 0 sind als Versagensmatrix in Tabelle 3-5 zusammengestellt.

Tabelle 3-5: Versagensmatrix der Serie S 0

Kriterium	S 0.1	S 0.2	S 0.3
robustes Versagen	+	+	-
Bügelbewehrung intakt	+	-	-
Bügelschloss geschlossen	+	+	+
Längsbewehrung intakt	-	-	-
Resttragfähigkeit $\beta_{1,33} \ge 0,5$	(+)	(+)	-
rechnerische Traglast erreicht	(+)	+	+

3.3 Serie S 1 – Versuche zur Mindestbauteilabmessung

3.3.1 Konfiguration der Versuchskörper

Die experimentellen Untersuchungen zur Überprüfung der Mindestbauteilabmessungen bei verschiedenen Betonfestigkeitsklassen erfolgten an drei Stahlbetonstützen S 1.1 bis S 1.3 (Bild 2-1). Tabelle 3-6 enthält eine Übersicht der Konfiguration der Versuchskörper (Prüfbereich).

Bezeichnung		S 1.1	S 1.2	S 1.3
Beton	[-]	C30/37	C50/60	C100/115
Abmessungen <i>b/h</i>	[cm]	24/24	24/24	24/24
Durchmesser Bügelbewehrung ϕ_w	[mm]	8	8	8
Abstand Bügelbewehrung s _{cl,t}	[cm]	24,0	24,0	24,0
Durchmesser Längsbewehrung ϕ_l	[mm]	40	40	40
Anzahl Längsbewehrung n	[Stk.]	4	4	4
Längsbewehrungsgrad $ ho_l$	[%]	8,7	8,7	8,7

Tabelle 3-6: Konfiguration der Versuchskörper der Serie S 1

Die Festlegung der Versuchskörperabmessungen erfolgte auf Grundlage der Regeln A und F nach Abschnitt 1.2.

Regel A:

$$\min(h, b)_{allg.} \ge \begin{cases} 200 \ mm \\ 120 \ mm \ (FT) \end{cases}$$
(3-1)

$$\min(h, b)_{\phi 40} \ge 15 \cdot \phi_l = 15 \cdot 40 \ mm = 600 \ mm \tag{3-2}$$

Regel F:

$$A_{s,max} = 0.09 \cdot A_c = 0.09 \cdot (24 \cdot 24) = 51.84 \ cm^2 \approx 50.28 \ cm^2 \triangleq 4 \ \phi 40 \tag{3-3}$$

Nach Regel A müsste der Stützenquerschnitt eine Höhe und eine Breite von mindestens 60 cm aufweisen. Unter Einhaltung der Regel F würde sich eine Mindestabmessung von 24/24 cm ergeben. Da Regel A die baupraktische Anwendung der großen Stabdurchmesser stark einschränkt, wurde der Stützenquerschnitt entsprechend Regel F zu 24/24 cm gewählt.

Zur Festlegung der erforderlichen Bügelbewehrung wurden die Regeln D und E nach Abschnitt 1.2 herangezogen.

Regel D:

$$\phi_{w,allg.} \ge \begin{cases} 6 mm \\ 0,25 \cdot \phi_l \end{cases} = \begin{cases} 6 mm \\ 0,25 \cdot 40 mm \end{cases} = \begin{cases} 6 mm \\ 10 mm \end{cases}$$
(3-4)

$$\phi_{w,\emptyset40} \ge 12 \ mm \tag{3-5}$$

Regel E:

$$s_{cl,tmax,allg.} \leq \begin{cases} 12 \cdot \phi_l \\ min(h,b) \\ 300 \ mm \end{cases} = \begin{cases} 12 \cdot 40 \ mm \\ 240 \ mm \\ 300 \ mm \end{cases} = \begin{cases} 480 \ mm \\ 240 \ mm \\ 300 \ mm \end{cases}$$
(3-6)

$$s_{cl,tmax,\emptyset40} \le \begin{cases} \min(h/2,b/2) \\ 300 \ mm \end{cases} = \begin{cases} 240 \ mm/2 \\ 300 \ mm \end{cases} = \begin{cases} 120 \ mm \\ 300 \ mm \end{cases}$$
(3-7)

Der Bügeldurchmesser wurde zu Ø8 mm gewählt. Eine Untersuchung mit Bügel Ø6 mm (unterster Wert nach Regel D) wurde vom projektbegleitenden Ausschuss als nicht erforderlich angesehen, da Bewehrungs-

stäbe Ø6 mm in der Baupraxis vermehrt durch Ø8 mm ersetzt und eigentlich nur noch auf Ringen produziert werden.

Als Bügelabstand wurde ein Wert von 240 mm angesetzt, womit die allgemeine Konstruktionsregel nach EC2+NA für Ø12 – Ø32 mm Längsbewehrung eingehalten wurde (siehe Gl. (3-6)).

Die Bügelschlösser wurden als 90°-Winkelhaken mit einer Winkelhakenlänge von $15 \cdot \phi_w$ nach EC2+NA Abschnitt 9.5.3 (2) ausgeführt und nur an der Betonierseite, jedoch versetzt angeordnet (ungünstiger Fall).

Desweiteren wurden in der Serie S 1 die Regeln B und C (zulässige Betonfestigkeitsklassen) nach Abschnitt 1.2 überprüft.

3.3.2 Experimentelle Ergebnisse

Die Versuchskörper S 1.1 und S 1.2 versagten sehr robust, der Versuchskörper S 1.3 hingegen weitgehend schlagartig. Bild 3-5 zeigt die Bruchbilder der einzelnen Versuche nach Entfernen der losen Betonstücke.

Bild 3-5: Versuchskörper nach dem Versuch: a) und b) S 1.1, c) und d) S 1.2 sowie e) und f) S 1.3

Ein leichtes Ausknicken der Längsbewehrung trat nur bei Versuch S 1.3 in der Versagenszone auf. Die Bügelbewehrung blieb bei allen Versuchskörpern intakt.

Vergleicht man Versuch S 1.1 mit Versuch S 0.1, zeigt sich ein ähnliches Rissbild bzw. eine ähnliche Ausbildung der Bruchprozesszone.

Die im Versuch ermittelten Kraft-Auslenkungs-Beziehungen sind in Bild 3-6 (links) dargestellt. Bild 3-6 (rechts) zeigt die auf die Höchstlast F_{max} und zugehörige Verkürzung w_{max} bezogenen Kraft-Verformungs-Beziehungen.

Bild 3-6: Kraft-Auslenkungs-Beziehungen (links) und bezogene Kraft-Verformungs-Verläufe (rechts)

Aus den bezogenen Kraft-Verformungs-Verläufe ist zu erkennen, dass die Versuchskörper S 1.1 und S 1.2 aufgrund des hohen Längsbewehrungsgrades eine hohe Resttragfähigkeit aufweisen ($\beta_{1,33} \approx 0,75$). Bei der hochfesten Stütze S 1.3 war nach Erreichen der maximalen Traglast nur noch eine gewisse Resttragfähigkeit zu verzeichnen, wobei $\beta_{1,33}$ unterhalb von 0,5 liegt.

Bei einer Gegenüberstellung der bezogenen Kraft-Verformungs-Verläufe der Serie S 0 mit S 1 zeigt sich bei Serie S 1 ein robusteres Nachbruchverhalten infolge des höheren Längsbewehrungsgrad.

Einen Überblick über die Versuchsergebnisse und -beobachtungen gibt Tabelle 3-7. Weitere Ergebnisse sind dem Anhang zu entnehmen.

Bezeichnung		S 1.1	S 1.2	S 1.3
Druckfestigkeit <i>f_{cm,cyl.}</i>	[N/mm ²]	33,3	50,8	86,6
Traglast F _{max}	[kN]	3.288,3	3.669,0	5.489,4
Mittenauslenkung v _{max}	[mm]	6,2	3,4	3,7
Betonstauchung ε_{c1}	[‰]	-2,3	-2,0	-2,4
Resttragfähigkeit $\beta_{1,33}$	[-]	0,75	0,74	0,38
Versagensart	[-]	robust	robust	schlagartig
Zustand Bügelbew.	[-]	intakt	intakt	intakt
Zustand Bügelschloss	[-]	geschlossen	geschlossen	geschlossen
Zustand Längsbew.	[-]	intakt	intakt	leicht ausgeknickt

Tabelle 3-7: Versuchsergebnisse und -beobachtungen der Serie S 1

3.3.3 Rechnerische Beurteilung der Versuche

Der Vergleich der experimentellen und rechnerischen Kraft-Auslenkungs-Beziehungen bzw. der Traglasten der Serie S 1 kann Bild 3-7 und Tabelle 3-8 entnommen werden.

Bild 3-7: Experimentelle und rechnerische Kraft-Auslenkungs-Beziehungen der Versuchserie S 1: Nachrechnung I (links) und Nachrechnung II (rechts)

Bezeichnung		S 1.1	S 1.2	S 1.3
exp. Traglast F _{max,exp}	[kN]	3.288,3	3.669,0	5.489,4
rechn. Traglast F _{max,cal,I}	[kN]	3.210,0	4.020,0	5.460,0
F _{max,exp} /F _{max,cal,I}	[-]	1,02	0,91	1,01
rechn. Traglast F _{max,cal,II}	[kN]	3.170,0	3.990,0	5.400,0
F _{max,exp} /F _{max,cal,II}	[-]	1,04	0,92	1,02

Tabelle 3-8: Vergleich der experimentellen und rechnerischen Traglasten der Serie S 1

Im Vergleich der experimentellen mit den rechnerischen Traglasten wird ersichtlich, dass die Versuche sowohl mit Nachrechnung I als auch mit Nachrechnung II sehr gut nachgerechnet werden können. Die Übereinstimmung der experimentellen Werte mit Rechnung II ist geringfügig ungenauer, was auf die Idealisierungen zurückgeführt werden kann.

3.3.4 Zusammenfassung und Erkenntnisse

Die Ergebnisse der Versuchsserie S 1 sind als Versagensmatrix in Tabelle 3-9 zusammengestellt.

Kriterium	S 1.1	S 1.2	S 1.3
robustes Versagen	+	+	-
Bügelbewehrung intakt	+	+	+
Bügelschloss geschlossen	+	+	+
Längsbewehrung intakt	+	+	-
Resttragfähigkeit $\beta_{1,33} \ge 0,5$	+	+	-
rechnerische Traglast erreicht	+	+	+

 Tabelle 3-9:
 Versagensmatrix der Serie S 1

Aus der Versuchserie S 1 können folgende Erkenntnisse gezogen werden:

- Eine Mindestbauteildicke von $\geq 15 \cdot \phi_l$ erscheint bei Ø40 mm nicht unbedingt erforderlich.
- Ein Bewehrungsgrad von ungefähr 9,0 % ist bei Ø40 mm unproblematisch.
- Eine Ausführung von Stützen mit Betonfestigkeitsklassen > C60/75 ist möglich, jedoch trat bei der gewählten Bewehrungskonfiguration ein sprödes Versagen auf.
- Die Wahl des Bügeldurchmessers und des Bügelabstandes gemäß den Regelungen für Längsbewehrung Ø12 – Ø32 mm erscheint für Ø40 mm ausreichend zu sein.
- Die Bügelschlösser können bei Ø40 mm mit 90°-Winkelhaken und einer Winkelhakenlänge von 15 · φ_l ausgeführt werden, wenn der Bügelabstand gemäß der Konstruktionsregel für Längsbewehrung Ø12 – Ø32 mm gewählt wird.
- Da in den Versuchen keine Längsrissbildung zu erkennen war, scheint eine Betondeckung zur Sicherstellung des Verbunds von $1,0 \cdot \phi_l$ für Längsbewehrung Ø40 mm ausreichend zu sein.

3.4 Serie S 2 – Versuche zum Einfluss der Bügelbewehrung

3.4.1 Konfiguration der Versuchskörper

Die experimentellen Untersuchungen zur Überprüfung der erforderlichen Bügelbewehrung erfolgten an sechs Stahlbetonstützen S 2.1 bis S 2.6 (Bild 2-1). Tabelle 3-10 enthält eine Übersicht der Konfiguration der Versuchskörper (Prüfbereich).

Bezeichnung		S 2.1	S 2.2	S 2.3	S 2.4	S 2.5	S 2.6
Beton	[-]	C30/37	C30/37	C30/37	C30/37	C100/115	C100/115
Abmessungen <i>b/h</i>	[cm]	36/36	36/36	36/36	36/36	36/36	36/36
Durchmesser Bügelbewehrung ϕ_w	[mm]	8	12	8	12	8	12
Abstand Bügelbewehrung s _{cl,t}	[cm]	30,0	30,0	48,0	48,0	48,0	48,0
Durchmesser Längsbewehrung ϕ_l	[mm]	40	40	40	40	40	40
Anzahl Längsbewehrung n	[Stk.]	4	4	4	4	4	4
Längsbewehrungsgrad $ ho_l$	[%]	3,9	3,9	3,9	3,9	3,9	3,9

Tabelle 3-10: Konfiguration der Versuchskörper der Serie S 2

Die Festlegung der Bügelbewehrung erfolgte auf Grundlage der Regeln D und E nach Abschnitt 1.2. <u>Regel D:</u>

$$\phi_{w,allg.} \ge \begin{cases} 6 \, mm \\ 0,25 \cdot \phi_l \end{cases} = \begin{cases} 6 \, mm \\ 0,25 \cdot 40 \, mm \end{cases} = \begin{cases} 6 \, mm \\ 10 \, mm \end{cases}$$
(3-8)

$$\phi_{w,\emptyset40} \ge 12 \ mm \tag{3-9}$$

Regel E:

$$s_{cl,tmax,allg.} \leq \begin{cases} 12 \cdot \phi_l \\ min(h,b) \\ 300 mm \end{cases} = \begin{cases} 12 \cdot 40 mm \\ 360 mm \\ 300 mm \end{cases} = \begin{cases} 480 mm \\ 360 mm \\ 300 mm \end{cases}$$
(3-10)

$$s_{cl,tmax,\emptyset40} \le \begin{cases} \min(h/2,b/2) \\ 300 \ mm \end{cases} = \begin{cases} 360 \ mm/2 \\ 300 \ mm \end{cases} = \begin{cases} 180 \ mm \\ 300 \ mm \end{cases}$$
(3-11)

Um die Regel D zur Bestimmung des erforderlichen Bügeldurchmessers zu überprüfen, wurde Bügelbewehrung mit Ø8 mm oder aber Ø12 mm eingebaut. Eine Untersuchung mit Bügel Ø6 mm (untere Grenze) wurde, wie bereits in Abschnitt 3.2.1 erläutert, vom projektbegleitenden Ausschuss als nicht erforderlich angesehen.

Zur Bestimmung des erforderlichen Bügelabstands bei Verwendung von Ø40 mm Längsbewehrung wurden der obere und untere Wert (480 mm und 300 mm) der Regel E für Längsbewehrung Ø12 – Ø32 mm (Gl. (3-10)) angesetzt. Hiermit sollte überprüft werden, ob die allgemeine Regel auch bei Längsbewehrung Ø40 mm verwendet werden kann.

Die Bügelschlösser wurden als 90°-Winkelhaken mit einer Winkelhakenlänge von $15 \cdot \phi_w$ nach EC2+NA Abschnitt 9.5.3 (2) ausgeführt und nur an der Betonierseite, jedoch versetzt angeordnet (ungünstiger Fall).

In Serie S 2 wurden zusätzlich die Regeln B und C (zulässige Betonfestigkeitsklassen) nach Abschnitt 1.2 untersucht.

3.4.2 Experimentelle Ergebnisse

Die Versuchskörper S 2.1 bis S 2.4 versagten robust (Betonversagen). Nach Erreichen der maximalen Traglast konnte eine Resttragfähigkeit verzeichnet werden. Dagegen versagten die Versuchskörper S 2.5 und S 2.6 schlagartig ohne Resttragfähigkeit, da der Betonquerschnitt völlig zerstört wurde (Scherbruch). Die Bruchbilder der einzelnen Versuche nach Entfernen der losen Betonstücke zeigt Bild 3-8.

Bild 3-8: Versuchskörper nach dem Versuch: a) und b) S 2.1, c) und d) S 2.2, e) und f) S 2.3, g) und h) S 2.4, i) und j) S 2.5 sowie k) und l) S 2.6

Ein Ausknicken der Längsbewehrung trat bei allen Versuchskörpern in der Versagenszone auf. Vergleicht man die ausknickende Längsbewehrung der Versuchskörper S 2.1 bis S 2.4 miteinander, kann geschlussfolgert werden, dass mit abnehmendem Bügeldurchmesser und zunehmendem Bügelabstand die Längsbewehrung stärker ausknickt.

Bei den Versuchsköpern S 2.5 und S 2.6 trat ein sehr starkes Ausknicken der Längsbewehrung mit einem starken Öffnen der Bügelschlössen auf. Da die Bügelschlösser nicht in der Lage waren, das Ausknicken zu begrenzen, erstreckte sich die Knicklänge über den doppelten Bügelabstand.

Bei den Versuchskörpern S 2.1, S 2.2 und S 2.4 blieben die Bügelschlösser geschlossen bzw. öffneten sich bei S 2.3 nur ganz leicht. Das leichte Öffnen bei S 2.3 lässt sich mit einem größeren Bügelabstand gegenüber S 2.1 (S 2.3 \rightarrow $s_{cl,t} = 48 \text{ cm}$ und S 2.1 \rightarrow $s_{cl,t} = 30 \text{ cm}$) und mit einem kleineren Bügeldurchmesser gegenüber S 2.4 (S 2.3 $\rightarrow \phi_w = 8 \text{ mm}$ und S 2.4 $\rightarrow \phi_w = 12 \text{ mm}$) erklären.

Die im Versuch ermittelten Kraft-Auslenkungs-Beziehungen sind in Bild 3-9 (links), die auf die Höchstlast F_{max} und zugehörige Verkürzung w_{max} bezogenen Kraft-Verformungs-Verläufe in Bild 3-9 (rechts) dargestellt.

Bild 3-9: Kraft-Auslenkungs-Beziehungen (links) und bezogene Kraft-Verformungs-Verläufe (rechts)

Vergleicht man die maximalen Traglasten der Versuchskörper S 2.1 bis S 2.4 aus normalfestem Beton miteinander, zeigen sich keine Anzeichen dafür, dass die Höhe der Traglast durch den Durchmesser und den Abstand der Bügelbewehrung beeinflusst wird. Im Nachbruchbereich ist hingegen eine Beeinflussung der Bügelbewehrung auf den Verlauf und die Höhe der Resttragfähigkeit zu verzeichnen. Mit abnehmendem Bügeldurchmesser und zunehmendem Bügelabstand nimmt die Resttragfähigkeit ab. Im Bezug auf die Resttragfähigkeit sollte daher nach Meinung der Verfasser bei Normalbeton ein Bügelabstand von 30 cm verwendet werden (siehe S 2.1 und S 2.2).

Beim Vergleich der hochfesten Stützen S 2.5 und S 2.6 wird ersichtlich, dass der Bügeldurchmesser und -abstand keinen Einfluss auf die maximale Traglast und auf die Resttragfähigkeit hat.

Bei einer Gegenüberstellung der Versuchsserie S 2 mit Versuchsserie S 0, zeigt sich sowohl bei den normalals auch bei den hochfesten Stützen ein ähnliches Last-Verformungs-Verhalten sowie ein ähnliches Rissbild bzw. Ausbildung der Bruchprozesszone.

Einen Überblick der Versuchsergebnisse und -beobachtungen gibt Tabelle 3-11. Weitere Ergebnisse können dem Anhang entnommen werden.

Bezeichnung		S 2.1	S 2.2	S 2.3	S 2.4	S 2.5	S 2.6
Druckfestigkeit <i>f_{cm,cyl.}</i>	[N/mm ²]	32,1	30,1	32,1	30,1	84,9	83,7
Traglast F _{max}	[kN]	4.800,9	4.987,4	5.246,3	4.892,8	11.809,3	10.801,2
Mittenauslenkung v_{max}	[mm]	2,5	3,6	3,5	3,1	3,4	4,0
Betonstauchung ε_{c1}	[‰]	-2,4	-2,6	-2,5	-1,7	-2,7	-2,7
Resttragfähigkeit $\beta_{1,33}$	[-]	0,70	0,72	0,32	0,50	0,07	0,11
Versagensart	[-]	robust	robust	robust	robust	schlagartig	schlagartig
Zustand Bügelbew.	[-]	intakt	intakt	intakt	intakt	intakt	intakt
Zustand Bügelschloss	[-]	ge- schlossen	ge- schlossen	leicht geöffnet	ge- schlossen	geöffnet	geöffnet
Zustand Längsbew.	[-]	ausgeknickt	leicht ausgeknickt	ausgeknickt	ausgeknickt	stark ausgeknickt	stark ausgeknickt

Tabelle 3-11: Versuchsergebnisse und -beobachtungen der Serie S 2

3.4.3 Rechnerische Beurteilung der Versuche

Der Vergleich der experimentellen und rechnerischen Kraft-Auslenkungs-Beziehungen bzw. der Traglasten der Serie S 2 kann Bild 3-10 und Tabelle 3-12 entnommen werden.

Bild 3-10: Experimentelle und rechnerische Kraft-Auslenkungs-Beziehungen der Versuchserie S 2: Nachrechnung I (links) und Nachrechnung II (rechts)

Bezeichnung		S 2.1	S 2.2	S 2.3	S 2.4	S 2.5	S 2.6
exp. Traglast F _{max,exp}	[kN]	4.800,9	4.987,4	5.246,3	4.892,8	11.809,3	10.801,2
rechn. Traglast F _{max,cal,I}	[kN]	5.650,0	5.400,0	5.600,0	5.400,0	10.980,0	11.000,0
F _{max,exp} /F _{max,cal,I}	[-]	0,85	0,92	0,94	0,91	1,08	0,98
rechn. Traglast F _{max,cal,II}	[kN]	5.600,0	5.400,0	5.700,0	5.480,0	10.980,0	10.900,0
F _{max,exp} /F _{max,cal,II}	[-]	0,86	0,92	0,92	0,89	1,08	0,99

Tabelle 3-12: Vergleich der experimentellen und rechnerischen Traglasten der Serie S 2

In Bild 3-10 wird ersichtlich, dass sich die Versuche rechnerisch etwas steifer verhalten und somit geringere Verformungen ermittelt werden.

Der tabellarische Vergleich von experimentellen und rechnerischen Traglasten (Tabelle 3-12) zeigt jedoch, dass sich sowohl mit Nachrechnung I als auch mit Nachrechnung II die Versuche S 2.2 bis S 2.6 gut nachgerechnet werden können (Abweichungen ≤ 9 %) und sich die Traglasten zwischen der Nachrechnung I und II fast nicht unterscheiden. Demgegenüber treten bei S 2.1 Abweichungen von 15 % bzw. 14 % auf, die so nicht nachvollzogen werden können (vgl. hierzu auch Nachrechnung S 0.1 in Abschnitt 3.2.3).

3.4.4 Zusammenfassung und Erkenntnisse

Die Ergebnisse der Versuchsserie S 2 sind als Versagensmatrix in Tabelle 3-13 zusammengestellt.

 Tabelle 3-13:
 Versagensmatrix der Serie S 2

Kriterium	S 2.1	S 2.2	S 2.3	S 2.4	S 2.5	S 2.6
robustes Versagen	+	+	+	+	-	-
Bügelbewehrung intakt	+	+	+	+	+	+
Bügelschloss geschlossen	+	+	-	+	-	-
Längsbewehrung intakt	-	-	-	-	-	-
Resttragfähigkeit $\beta_{1,33} \ge 0,5$	+	+	-	+	-	-
rechnerische Traglast erreicht	(+)	+	+	+	+	+

Aus der Versuchsserie S 2 können folgende Erkenntnisse gezogen werden:

- Der Bügeldurchmesser und der Bügelabstand haben keinen nennenswerten Einfluss auf die Höhe der Traglast; jedoch wird die Resttragfähigkeit wesentlich beeinflusst.
- Auch bei dieser Versuchskonfiguration können die Bügelschlösser bei Ø40 mm mit 90°-Winkelhaken und einer Winkelhakenlänge von 15 · φ_l ausgeführt werden, wenn der Bügelabstand gemäß der Konstruktionsregel für Längsbewehrung Ø12 – Ø32 mm gewählt wird.
- Eine Mindestbauteildicke von $\geq 15 \cdot \phi_l$ bei Ø40 mm war auch bei dieser Versuchskonfiguration nicht erforderlich.
- Bei Ø40 mm muss die Ausführung von Stützen nicht auf Betonfestigkeitsklassen ≤ C60/75 beschränkt werden; jedoch trat bei der gewählten Bewehrungskonfiguration ein sprödes Versagen auf.
- Da auch in dieser Versuchsserie keine Längsrissbildung zu erkennen war, scheint eine Betondeckung zur Sicherstellung des Verbunds von 1,0 · φ_l für Längsbewehrung Ø40 mm ausreichend zu sein.

3.5 Serie S 3 – Versuche zur zulässigen Stabanzahl je Bügelecke

3.5.1 Konfiguration der Versuchskörper

Die experimentellen Untersuchungen zur Überprüfung der zulässigen Stabanzahl je Bügelecke erfolgten an sechs Stahlbetonstützen S 3.1 bis S 3.6 (Bild 2-1). Tabelle 3-14 enthält eine Übersicht der Konfiguration der Versuchskörper (Prüfbereich).

Bezeichnung		S 3.1	S 3.2	S 3.3	S 3.4	S 3.5	S 3.6
Beton	[-]	C30/37	C30/37	C30/37	C30/37	C100/115	C100/115
Abmessungen <i>b/h</i>	[cm]	60/24	60/24	60/24	60/24	60/24	60/24
Durchmesser Bügelbewehrung ϕ_w	[mm]	12	12	12	8	12	12
Abstand Bügelbewehrung s _{cl,t}	[cm]	30,0	30,0	30,0	30,0	30,0	30,0
Durchmesser Längsbewehrung ϕ_l	[mm]	40	40	40	40	40	40
Anzahl Längsbewehrung n	[Stk.]	4	8	12	12	8	12
Längsbewehrungsgrad $ ho_l$	[%]	3,5	7,0	10,5	10,5	7,0	10,5

Tabelle 3-14: Konfiguration der Versuchskörper der Serie S 3

Auf Grundlage der Versuchsergebnisse der Serien S 1 und S 2 wurde der Bügelabstand zu 30 cm gewählt (= mittlerer Bügelabstand entsprechend Gl. (3-6)).

Die Bügel wurden mit 90°-Winkelhaken und einer Winkelhakenlänge von $10 \cdot \phi_w$ geschlossen und nur an der Betonierseite, jedoch versetzt angeordnet (ungünstiger Fall). Da aus geometrischen Bedingungen eine Winkelhakenlänge von nur $10 \cdot \phi_w$ angesetzt werden konnte, wurde der Widerstand gegen Abplatzen der Betondeckung durch eine Erhöhung des Mindestbügeldurchmessers um 2 mm entsprechend EC2+NA Abschnitt 9.5.3 (2) berücksichtigt (Regel D bzw. Gl. (3-8) + 2 mm = 12 mm). Abweichend hiervon wurde bei S 3.4 ein Bügeldurchmesser von Ø8 mm angesetzt, um den Einfluss des Bügeldurchmessers auf das Tragverhalten zu erfassen.

Zur Ermittlung der maximalen Stabanzahl je Bügelecke, die durch die Bügelbewehrung gegen Ausknicken gesichert wird, wurde die Regel H nach Abschnitt 1.2 berücksichtigt.

Regel H:

$$s_{ct,lmax} \le 15 \cdot \phi_w = \begin{cases} 15 \cdot 8\\ 15 \cdot 12 \end{cases} = \begin{cases} 120 \ mm}{180 \ mm} \rightarrow \begin{cases} \max 2 \ \emptyset 40\\ \max 3 \ \emptyset 40 \end{cases}$$
(3-12)

Aus der Auswertung der Regel H wird ersichtlich, dass bei einem Bügel Ø8 mm maximal zwei und bei einem Bügel Ø12 mm maximal drei Längseisen angeordnet werden können. Unabhängig hiervon wurden bei Versuchskörper S 3.4 mit Bügel Ø8 mm drei Längseisen je Bügelecke angeordnet, um das Trag- und Versagensverhalten zu erforschen.

In der Serie S 3 wurde desweiteren die Regel B und C (zulässige Betonfestigkeitsklasse) sowie Regel F (maximaler Längsbewehrungsgrad) nach Abschnitt 1.2 überprüft.

3.5.2 Experimentelle Ergebnisse

Bei den Versuchskörpern S 3.1 bis S 3.4 trat ein robustes, bei den Versuchskörpern S 3.5 und S 3.6 hingegen ein schlagartiges Betonversagen auf. Bild 3-11 zeigt die Bruchbilder der einzelnen Versuche nach Entfernen der losen Betonstücke.

Bild 3-11: Versuchskörper nach dem Versuch: a) S 3.1, b) S 3.2, c) S 3.3, d) S 3.4, e) S 3.5 und f) S 3.6

Ein Ausknicken der Längsbewehrung in der Versagenszone trat in Versuch S 3.4 und S 3.5 auf. Bei S 3.4 knickten nur die Längsstäbe, die direkt in der Bügelecke lagen leicht aus. Demgegenüber knickten bei S 3.5 neben den Längsstäben in den Bügelecken auch die anderen Längsstäbe aus und die Bügelbewehrung wurde, ähnlich wie bei S 0.2, leicht verformt. Zusätzlich trat bei S 3.5 ein leichtes Öffnen des Bügelschlosses in der Bruchzone auf. Bei allen anderen Versuchen blieb die Bügelbewehrung intakt und die Bügelschlösser geschlossen.

Das Versagen erfolgte beim hochfesten Versuchskörper S 3.6 durch plötzliche Betonabplatzungen an der oberen Lasteinleitungsstelle (siehe Bild 3-11 f)). Nach dem Versuch wurde festgestellt, dass die Stirnfläche zuvor nicht ganz planparallel geschliffen wurde und es deshalb zu Kantenpressungen an der längeren Querschnittsseite mit anschließenden Kantenabplatzungen kam. Dies erklärt auch die trotz des höheren Längsbewehrungsgrades im Vergleich zu S 3.5 geringere Traglast (siehe Bild 3-12) sowie Betonstauchung ε_{c1} (siehe Tabelle 3-15). Der Versuch S 3.6 muss somit als nicht repräsentativ angesehen werden.

Die im Versuch ermittelten Kraft-Auslenkungs-Beziehungen sind in Bild 3-12 (links), die auf die Höchstlast F_{max} und zugehörige Verkürzung w_{max} bezogenen Kraft-Verformungs-Verläufe in Bild 3-12 (rechts) dargestellt.

Bild 3-12: Kraft-Auslenkungs-Beziehungen (links) und bezogene Kraft-Verformungs-Verläufe (rechts)

Bei den Versuchskörpern S 3.1 bis S 3.5 konnte nach Überschreitung der maximalen Traglast eine Resttragfähigkeit verzeichnet werden, die bei den Versuchskörpern aus Normalbeton (S 3.1 bis S 3.4) mit zunehmender horizontaler Mittenauslenkung stetig abnimmt ($\beta_{1,33} > 0,50$) und bei Versuchskörper S 3.5 aus hochfestem Beton schlagartig auf ungefähr 30 % ($\beta_{1,33} = 0,27$) abfällt.

Vergleicht man die Kraft-Auslenkungs-Beziehungen bzw. bezogene Kraft-Verformungs-Verläufe der Versuchskörper S 3.1, S 3.2 und S 3.3 miteinander, zeigt sich, dass sowohl die maximale Traglast als auch die Resttragfähigkeit mit zunehmendem Längsbewehrungsgrad zunimmt und die Kurven nahezu parallel versetzt verlaufen. Beim Vergleich von S 3.3 mit S 3.4, welche sich lediglich im Bügeldurchmesser unterscheiden, ist sowohl bei der Traglast als auch bei der Resttragfähigkeit kaum ein Unterschied zu erkennen. Folglich beeinflussen die unterschiedlichen Bügeldurchmesser das Versuchsergebnis nicht und mit einem Bügel Ø8 mm können bei normalfestem Beton auch drei Längseisen gegen Ausknicken gesichert werden (siehe Regel H bzw. Gl. (3-12)).

Bei der Gegenüberstellung von S 3.2 und S 3.5, die bis auf die Betondruckfestigkeitsklasse baugleich sind, wird erkennbar, dass hochfeste Stützen trotz hohem Längsbewehrungsgrad ($\rho_l > 7,0\%$) nach Überschreiten der Traglast äußerst spröde versagen.

Einen Überblick der Versuchsergebnisse und -beobachtungen gibt Tabelle 3-15. Weitere Ergebnisse können dem Anhang entnommen werden.

Bezeichnung		S 3.1	S 3.2	S 3.3	S 3.4	S 3.5	S 3.6
Druckfestigkeit <i>f_{cm,cyl.}</i>	[N/mm ²]	34,1	36,0	31,1	33,7	81,9	91,0
Traglast Fmax	[kN]	4.960,7	7.240,3	9.115,4	9.443,4	14.024,8	10.432,8
Mittenauslenkung v _{max}	[mm]	6,1	7,5	6,3	6,5	3,9	4,5
Betonstauchung ε_{c1}	[‰]	-2,5	-4,2	-2,4	-3,2	-2,6	-1,7
Resttragfähigkeit $\beta_{1,33}$	[-]	0,53	0,65	0,75	0,76	0,27	-
Versagensart	[-]	robust	robust	robust	robust	schlagartig	schlagartig
Zustand Bügelbew.	[-]	intakt	intakt	intakt	intakt	verformt	intakt
Zustand Bügelschloss	[-]	ge- schlossen	ge- schlossen	ge- schlossen	ge- schlossen	leicht geöffnet	ge- schlossen
Zustand Längsbew.	[-]	intakt	intakt	intakt	leicht ausgeknickt	leicht ausgeknickt	leicht ausgeknickt

Tabelle 3-15: Versuchsergebnisse und -beobachtungen der Serie S 3

3.5.3 Rechnerische Beurteilung der Versuche

Der Vergleich der experimentellen und rechnerischen Kraft-Auslenkungs-Beziehungen bzw. der Traglasten der Serie S 3 kann Bild 3-13 und Tabelle 3-16 entnommen werden.

Bild 3-13: Experimentelle und rechnerische Kraft-Auslenkungs-Beziehungen der Versuchserie S 3: Nachrechnung I (links) und Nachrechnung II (rechts)

Bezeichnung		S 3.1	S 3.2	S 3.3	S 3.4	S 3.5	S 3.6
exp. Traglast F _{max,exp}	[kN]	4.960,7	7.240,3	9.115,4	9.443,4	14.024,8	10.432,8
rechn. Traglast F _{max,cal,I}	[kN]	5.350,0	7.250,0	8.500,0	9.500,0	12.700,0	15.250,0
F _{max,exp} /F _{max,cal,I}	[-]	0,93	1,00	1,07	0,99	1,10	0,68
rechn. Traglast F _{max,cal,II}	[kN]	5.280,0	7.250,0	8.450,0	9.400,0	12.400,0	15.000,0
F _{max,exp} /F _{max,cal,II}	[-]	0,94	1,00	1,08	1,00	1,13	0,70

Tabelle 3-16: Vergleich der experimentellen und rechnerischen Traglasten der Serie S 3

In Bild 3-13 und Tabelle 3-16 lässt sich erkennen, dass sich die Versuche S 3.1 bis S 3.5 mit der Nachrechnung I und der Nachrechnung II gut überprüfen lassen. Lediglich die Abweichung bei der Nachrechnung II des Versuchskörpers S 3.5 ist mit 13 % etwas zu gering, jedoch auf der sicheren Seite liegend. Bei Versuch S 3.6 werden stets zu große rechnerische Traglasten ermittelt, was auf das Lasteinleitungsproblem zurückgeführt werden kann (vgl. Abschnitt 3.5.2).

3.5.4 Zusammenfassung und Erkenntnisse

Die Ergebnisse der Versuchsserie S 3 sind als Versagensmatrix in Tabelle 3-17 zusammengestellt.

 Tabelle 3-17:
 Versagensmatrix der Serie S 3

Kriterium	S 3.1	S 3.2	S 3.3	S 3.4	S 3.5	S 3.6
robustes Versagen	+	+	+	+	-	-
Bügelbewehrung intakt	+	+	+	+	-	+
Bügelschloss geschlossen	+	+	+	+	-	+
Längsbewehrung intakt	+	+	+	-	-	-
Resttragfähigkeit $\beta_{1,33} \ge 0,5$	+	+	+	+	-	/
rechnerische Traglast erreicht	+	+	+	+	+	-

Aus der Versuchserie S 3 können folgende Erkenntnisse gezogen werden:

- Eine Übertragung der Regelung für Längsbewehrung Ø12 Ø32 mm hinsichtlich des maximalen Abstandes der Längsstäbe im Eckbereich erscheint für Längsbewehrung Ø40 mm möglich zu sein.
- Der Bügeldurchmesser und der Bügelabstand haben bei der gewählten Versuchskonfiguration keinen Einfluss auf die Höhe der Traglast.
- Bei dieser Versuchskonfiguration können die Bügelschlösser bei Ø40 mm mit 90°-Winkelhaken und einer Winkelhakenlänge von 10 · φ_l ausgeführt werden, wenn der Bügelabstand gemäß der Konstruktionsregel für Längsbewehrung Ø12 – Ø32 mm gewählt wird.
- Ein maximaler Bewehrungsgrad von 10,5 % ist bei Längsbewehrung Ø40 mm unproblematisch.
- Eine Mindestbauteildicke von $\geq 15 \cdot \phi_l$ bei Ø40 mm war auch bei dieser Versuchskonfiguration nicht erforderlich.
- Eine Ausführung von Stützen mit Betonfestigkeitsklassen > C60/75 ist möglich, wobei auch bei dieser Versuchskonfiguration ein sprödes Versagen auftritt.
- Da in den Versuchen keine Längsrissbildung zu erkennen war, scheint eine Betondeckung zur Sicherstellung des Verbunds von 1,0 · φ_l für Längsbewehrung Ø40 mm ausreichend zu sein.

3.6 Serie S 4 – Versuche zur Druckstoßausbildung

3.6.1 Konfiguration der Versuchskörper

Die experimentellen Untersuchungen zur Überprüfung der Druckstoßausbildung erfolgten an fünf Stahlbetonstützen S 4.1 bis S 4.5 (Bild 2-1). Tabelle 3-18 enthält eine Übersicht der Konfiguration der Versuchskörper (Prüfbereich).

Bezeichnung		S 4.1	S 4.2	S 4.3	S 4.4	S 4.5
Beton	[-]	C30/37	C30/37	C30/37	C30/37	C30/37
Abmessungen <i>b/h</i>	[cm]	36/36	36/36	36/36	36/36	36/36
Durchmesser Bügelbewehrung ϕ_w	[mm]	8	12	12	12	12
Abstand Bügelbewehrung s _{cl,t}	[cm]	8,8	11,0	6,3	11,0	11,0
Durchmesser Längsbewehrung ϕ_l	[mm]	40	40	40	40	40
Anzahl Längsbewehrung n	[Stk.]	2 x 4	2 x 4	2 x 4	2 x 4	2 x 4
Längsbewehrungsgrad $ ho_l$	[%]	7,8	7,8	7,8	7,8	7,8

Tabelle 3-18: Konfiguration der Versuchskörper der Serie S 4

Die Festlegung der Übergreifungslänge der Druckstöße erfolgte nach EC2+NA Abschnitt 8.7.3. Die Beiwerte α_1 , α_3 , und α_6 wurden hierbei zu 1,0 angesetzt und der Beiwert α_5 nicht berücksichtigt. Für den Grundwert der Verankerungslänge $l_{b,rqm}$ nach EC2+NA Abschnitt 8.4.3 wurde, affin zu den Verbundversuchen aus Aachen, eine mittlere Stahlspannung von $\sigma_{sm} = 550 N/mm^2$ angesetzt. Zur Ermittlung der Verbundfestigkeit f_{bm} nach EC2+NA Abschnitt 8.4.2 wurde die mittlere Betonzugfestigkeit für einen C30/37 entsprechend EC2+NA Tab. 3.1 zu $f_{ctm} = 2.9 N/mm^2$ und die Beiwerte η_1 und η_2 zu 1,0 verwendet. Die Berücksichtigung der Zusatzbedingung für große Stabdurchmesser beim Beiwert η_2 wurde auf der sicheren Seite liegend vernachlässigt.

Übergreifungslänge gemäß EC2+NA Abschnitt 8.7.3:

$$l_{0} = \alpha_{1} \cdot \alpha_{3} \cdot \alpha_{6} \cdot \left(\frac{\phi}{4} \cdot \frac{\sigma_{sm}}{(2,25 \cdot \eta_{1} \cdot \eta_{2} \cdot f_{ctm})}\right) \ge l_{0,min}$$

$$l_{0} = 1, 0 \cdot 1, 0 \cdot \left(\frac{40 \ mm}{4} \cdot \frac{550 \ N/mm^{2}}{(2,25 \cdot 1, 0 \cdot 1, 0 \cdot 2, 9 \ N/mm^{2})}\right) \ge l_{0,min}$$
(3-13)

 $l_0 = 842,3 mm$

$$l_{0,min} = \max \begin{cases} 0.3 \cdot \alpha_1 \cdot \alpha_6 \cdot \left(\frac{\phi}{4} \cdot \frac{\sigma_{sm}}{(2,25 \cdot \eta_1 \cdot \eta_2 \cdot f_{ctm})}\right) \\ 15 \cdot \phi \\ 200 \ mm \end{cases} = \begin{cases} 0.3 \cdot 1.0 \cdot 1.0 \cdot 842.3 \ mm \\ 15 \cdot 40 \ mm \\ 200 \ mm \end{cases} = \begin{cases} 252.7 \ mm \\ 600 \ mm \\ 200 \ mm \end{cases}$$
(3-14)

Die Übergreifungslänge wurde bei allen Versuchen mit einer Länge von 84 cm ausgeführt (siehe Bild 3-14).

Bild 3-14: Ausführung des Übergreifungsbereichs bei den Versuchskörpern der Versuchsserie S 4

Um Regel D nach Abschnitt 1.2 zu überprüfen, wurde der Bügeldurchmesser wie bei den vorherigen Versuchsserien zu Ø8 mm und Ø12 mm gewählt.

Nach EC2+NA ist bei einem Übergreifungsstoß der kleinste Bügelabstand nach Regel E ($s_{cl,tmax} = 300 mm$ nach Gl. (3-10)) zu verringern. Hierbei sind nachfolgende Regelungen zu beachten.

Bügelabstand beim Druckstoß nach EC2+NA Abschnitt 9.5.3 (4) und Bild 8.9:

$$s_{cl,t,St} \le \begin{cases} 0.6 \cdot s_{cl,tmax} \\ 150 \ mm \end{cases} = \begin{cases} 0.6 \cdot 300 \ mm \\ 150 \ mm \end{cases} = \begin{cases} 180 \ mm \\ 150 \ mm \end{cases}$$
(3-15)

Desweiteren darf nach EC2+NA Abschnitt 8.7.4 im Bereich der Übergreifungslänge die Gesamtquerschnittsfläche der Bügelbewehrung $\sum A_{St}$ nicht kleiner als die Querschnittsfläche A_s eines gestoßenen Stabes ($\sum A_{St} \ge 1, 0 \cdot A_s$) sein. Diese ist je zur Hälfte im Anfangs- und Endbereich der Übergreifungslänge über eine Länge von $l_0/3$ anzuordnen. Desweiteren ist mindestens ein Bügel außerhalb des Stoßbereichs, jedoch nicht weiter als $4 \cdot \phi_l$ vom Stoßende einzubauen. Bei S 4.2, S 4.4 und S 4.5 wurde die nach EC2+NA erforderliche Bügelbewehrung (100 %) angeordnet. Davon abweichend wurde bei S 4.1

nur ungefähr 50 % und bei S 4.3 ungefähr 150 % der erforderlichen Bügelbewehrung verbaut, um den Einfluss des Bügelbewehrungsgrads zu erfassen.

Da Stöße nach EC2+NA Abschnitt 8.7.2 (2) in der Regel nicht in hoch beanspruchten Bereichen liegen sollten, wurden die Versuchskörper S 4.4 und S 4.5 unter zentrischem Längsdruck geprüft und aus Vergleichsgründen wie S 4.2 ausgeführt. Bei Versuchskörper S 4.5 wurden abweichend zu S 4.2 und S 4.4 Kunststoffkappen mit 1,0 cm dicker Hartschaumstoff-Einlage (extrudierter Polystrol) auf die Stoßenden gesteckt. Hierdurch sollte im Versuch die Lastübertragung durch Spitzendruck verhindert und dessen Einfluss durch Vergleich von S 4.4 mit S 4.5 untersucht werden.

Die Bügelschlösser wurden als 90°-Winkelhaken mit einer Winkelhakenlänge von $15 \cdot \phi_w$ nach EC2+NA Abschnitt 9.5.3 (2) ausgeführt und nur an der Betonierseite, jedoch versetzt angeordnet (ungünstiger Fall).

3.6.2 Experimentelle Ergebnisse

In allen Versuchen (S 4.1 bis S 4.5) trat ein robustes Versagen mit Resttragfähigkeit auf. Die Bruchbilder der einzelnen Versuche nach Entfernen der losen Betonstücke zeigt Bild 3-15.

Bild 3-15: Versuchskörper nach dem Versuch: a) und b) S 4.1, c) und d) S 4.2, e) und f) S 4.3, g) und h) S 4.4 sowie i) bis k) S 4.5

Das Versagen war bei Versuch S 4.1 bis S 4.4 nicht durch Betonbruch, sondern durch ein Durchstanzen der Längsbewehrung gekennzeichnet (siehe Bild 3-15 a) bis h)). Demgegenüber trat bei der gestoßenen Längsbewehrung bei Versuchskörper S 4.5 ein Verbundversagen auf (siehe Bild 3-15 i) bis k)). Dieses kann auf den fehlenden Spitzendruck (Kunststoffkappen) und auf die unzureichende Übergreifungslänge zurückgeführt werden. Bis auf Versuch S 4.2, bei dem die Längsbewehrung im mittleren Stoßbereich leicht ausknickte, trat bei S 4.1 sowie S 4.3 bis S 4.5 kein Ausknicken der Längsbewehrung auf.

Die im Versuch ermittelten Kraft-Auslenkungs-Beziehungen sind in Bild 3-16 (links), die auf die Höchstlast F_{max} und zugehörige Verkürzung w_{max} bezogenen Kraft-Verformungs-Verläufe in Bild 3-16 (rechts) dargestellt.

Bild 3-16: Kraft-Auslenkungs-Beziehungen (links) und bezogene Kraft-Verformungs-Verläufe (rechts)

Infolge der beiden Versagensarten "Durchstanzen" und "Verbundbruch" wurde bei allen Versuchen die zuvor geschätzte Traglast nie erreicht. Vergleicht man jedoch die Traglast des Versuchskörpers S 4.2 mit der von S 4.1 zeigt sich, dass mit dem ungefähr 50 % geringeren Bügelbewehrungsgrad eine um nur 10 % geringere Traglast erzielt wird. Dagegen zeigt sich bei dem um 50 % höheren Bügelbewehrungsgrad bei S 4.3 im Vergleich zu S 4.2 keine höhere Traglast. Folglich kann durch eine Erhöhung des Bügelbewehrungsgrades oberhalb des Normwertes von $\sum A_{St} = 1,0 \cdot A_s$ keine höhere Traglast und somit ein anderes Versagen bewirkt werden. Bei S 4.1 und S 4.2 wurde jedoch abweichend zu S 4.3 die Bügelbewehrung direkt hinter dem unteren Übergreifungsende leicht verformt und bei S 4.1 zusätzlich das Bügelschloss leicht geöffnet.

In der Gegenüberstellung der beiden zentrisch belasteten Versuche S 4.4 und S 4.5 wird ersichtlich, dass mit Spitzendruck eine ungefähr 10 % höhere Traglast erzielt wird (s. Tabelle 3-19). Mit Spitzendruck traten bei der Bügelbewehrung direkt hinter dem unteren Übergreifungsende allerdings eine leichte Verformung sowie ein leichtes Öffnen des Bügelschlosses auf.

Versuchsergebnisse und -beobachtungen können zusammenfassend Tabelle 3-19 entnommen werden. Weitere Ergebnisse sind dem Anhang zu entnehmen.

Bezeichnung		S 4.1	S 4.2	S 4.3	S 4.4	S 4.5
Druckfestigkeit <i>f_{cm,cyl.}</i>	[N/mm ²]	31,8	32,4	32,7	33,2	33,0
Traglast F _{max}	[kN]	4.222,9	4.629,7	4.663,3	5.164,2	4.744,5
Mittenauslenkung v_{max}	[mm]	3,1	3,6	4,6	-	-
Betonstauchung ε_{c1}	[‰]	-1,3	-1,7	-2,0	-1,3 *)	-1,2 *)
Betonstauch. Stoß $\varepsilon_{c1,St}$	[‰]	-2,4	-2,6	-2,5	-2,5	-2,1
Resttragfähigkeit $\beta_{1,33}$	[-]	0,51	0,44	0,55	0,32	0,37
Versagensart	[-]	robust	robust	robust	robust	robust
Zustand Bügelbew.	[-]	leicht verformt	leicht verformt	intakt	leicht verformt	intakt
Zustand Bügelschloss	[-]	leicht geöffnet	geschlossen	geschlossen	leicht geöffnet	geschlossen
Zustand Längsbew.	[-]	intakt	leicht ausgeknickt	intakt	intakt	intakt
Versagen Längsbew.	[-]	durchgestanzt	durchgestanzt	durchgestanzt	durchgestanzt	verschoben

Tabelle 3-19: Versuchsergebnisse und -beobachtungen der Serie S 4

*) Mittelwert von allen Querschnittsseiten

3.6.3 Rechnerische Beurteilung der Versuche

Der Vergleich der experimentellen und rechnerischen Kraft-Auslenkungs-Beziehungen bzw. der Traglasten der Serie S 4 kann Bild 3-17 und Tabelle 3-20 entnommen werden.

Bild 3-17: Experimentelle und rechnerische Kraft-Auslenkungs-Beziehungen der Versuchserie S 4: Nachrechnung I (links) und Nachrechnung II (rechts)

Bezeichnung		S 4.1	S 4.2	S 4.3	S 4.4	S 4.5
exp. Traglast F _{max,exp}	[kN]	4.222,9	4.629,7	4.663,3	5.164,2	4.744,5
rechn. Traglast F _{max,cal,I}	[kN]	5.620,0	5.720,0	5.750,0	6.120,0	6.090,0
F _{max,exp} /F _{max,cal,I}	[-]	0,75	0,81	0,81	0,84	0,78
rechn. Traglast F _{max,cal,II}	[kN]	5.620,0	5.700,0	5.730,0	6.090,0	6.060,0
F _{max,exp} /F _{max,cal,II}	[-]	0,75	0,81	0,81	0,85	0,78

Tabelle 3-20: Vergleich der experimentellen und rechnerischen Traglasten der Serie S 4

Entsprechend Tabelle 3-20 weichen die experimentellen Versuchslasten um bis zu 25 % von den rechnerischen Traglasten ab. Dieses kann, wie bereits unter Abschnitt 3.6.2 erwähnt, auf das Durchstanzen bzw. Verbundversagen der gestoßenen Längsbewehrung zurückgeführt werden. Hiermit lassen sich auch die Abweichungen der Verformungen in Bild 3-17 erklären.

3.6.4 Zusammenfassung und Erkenntnisse

Die Ergebnisse der Versuchsserie S 4 sind als Versagensmatrix in Tabelle 3-21 zusammengestellt.

 Tabelle 3-21:
 Versagensmatrix der Serie S 4

Kriterium	S 4.1	S 4.2	S 4.3	S 4.4	S 4.5
robustes Versagen	+	+	+	+	+
Bügelbewehrung intakt	-	-	+	-	+
Bügelschloss geschlossen	-	+	+	-	+
Längsbewehrung intakt	+	-	+	+	+
Resttragfähigkeit $\beta_{1,33} \ge 0,5$	+	-	+	-	-
rechnerische Traglast erreicht	-	-	-	-	-

Aus der Versuchserie S 4 können folgende Erkenntnisse gezogen werden:

- Die in EC2+NA aufgeführten Konstruktionsregeln zur Ausbildung von Druck-Übergreifungsstößen können nicht für große Stabdurchmesser Ø40 mm angewandt werden.
- Wird der nach EC2+NA erforderliche Bügelbewehrungsgrad im Bereich des Übergreifungsstoßes um 50 % erhöht, kann keine Traglaststeigerung erzielt werden.
- Eine komplette Eliminierung des Spitzendrucks wirkt sich nachteilig auf die ertragbare Beanspruchung aus.

4 Vorschlag für Konstruktionsregeln

4.1 Form

Aus den Ergebnissen der Versuchsserien S1, S2 und S3 wird ersichtlich, dass die Regel A gemäß Abschnitt 1.2 zur Mindestbauteildicke von

$$\min(h, b)_{\phi 40} \ge 15 \cdot \phi_l \tag{4-1}$$

nach EC2+NA Abschnitt 8.8 (1) bei Stützen mit großen Stabdurchmesser Ø40 mm aus Herstellungs- und Tragfähigkeitsgründen nicht erforderlich ist und kleinere Querschnittsabmessungen (z. B. 240 mm oder ggf. auch 200 mm) möglich sind.

4.2 Beton

In Bezug auf die Betonfestigkeit können mit den Ergebnissen der drei Versuchsserien S 1, S 2 und S 3 die Regeln zu den zulässigen Betonfestigkeitsklassen (Regel B und C) nach EC2+NA Abschnitt 8.8 (1) bestätigt werden. Eine Beschränkung auf \leq C60/75 ist bei Stützen mit großen Stabdurchmesser Ø40 mm nicht erforderlich. Gegebenenfalls sollte der zunehmenden Sprödigkeit durch andere konstruktive Maßnahmen begegnet werden.

Bei überwiegend auf Druck beanspruchten Bauteilen ist bei großen Stabdurchmesser Ø40 mm im Hinblick auf die Traglast eine Ausführung mit einer Festigkeitsklasse > C80/95 vertretbar.

4.3 Querbewehrung

Die Untersuchungen der Serie S 1, S 2 und S 3 zeigen, dass die maximale Traglast der Stützen bei den gewählten Bewehrungskonfiguration nicht in Zusammenhang mit dem verwendeten Bügeldurchmesser und Bügelabstand stand. Im Nachbruchbereich ist jedoch eine deutliche Beeinflussung zu erkennen.

Auf Basis dessen können nach Meinung der Verfasser die Zusatzregel D (siehe EC2+NA Abschnitt 9.5.3 (1)) und die Zusatzregel E (siehe EC2+NA Abschnitt 8.8 (NA.21)) entschärft werden. Zur Bestimmung des Mindestbügeldurchmessers könnte die Regel D mit

$$\phi_{w,allg.} \ge \begin{cases} 6 \, mm \\ 0,25 \cdot \phi_l \end{cases} \tag{4-2}$$

(vgl. EC2+NA Abschnitt 9.5.3 (2)) und zur Bestimmung des maximal zulässigen Abstands der Bügelbewehrung könnte die Regel E mit

$$s_{cl,tmax,allg.} \leq \begin{cases} 12 \cdot \phi_l \\ \min(h,b) \\ 300 \ mm \end{cases}$$
(4-3)

(vgl. EC2+NA Abschnitt 9.5.3 (3)) auch bei einer Längsbewehrung Ø40 mm verwendet werden.

Mit den Untersuchungen konnte ferner die Ausführung der Verankerung der Bügelbewehrung (Bügelschlösser) entsprechend EC2+NA Abschnitt 9.5.3 (2) bestätigt werden.

4.4 Längsbewehrung

Auf Grundlage der experimentellen und theoretischen Untersuchungen der Versuchsserien S 1 und S 3 kann die Regel F zum maximalen Längsbewehrungsgrad (siehe EC2+NA Abschnitt 9.5.2 (2)) mit

$$A_{s,max} = 0.09 \cdot A_c \tag{4-4}$$

bestätigt werden. Darüber hinaus konnte eine Ausweitung auf Längsbewehrungsgrade von bis zu 10,5 % belegt werden. Eine weitere Vergrößerung dieses Wertes erscheint gut möglich.

Regel G zur maximalen Anzahl von Stäben, die durch die Bügelbewehrung gegen Ausknicken gesichert werden (siehe EC2+NA Abschnitt 9.5.3 (6)), sollte nach den Erfahrungen der Versuchsserie S 3 zurzeit auf maximal 3 Stäbe beschränkt werden. Diese Stäbe könnten dann aber einen maximalen Abstand vom Eckbereich nach Regel H von

$$s_{ct,lmax} \leq 15 \cdot \phi_w$$

(4-5)

(vgl. EC2+NA Abschnitt 9.5.3 (6)) aufweisen. Weitere Stäbe und solche die den Abstand nach Gl. (4-5) überschreiten, sollten entsprechend EC2+NA Abschnitt 9.5.3 (6) durch eine weitere Bügelbewehrung (Zwischenbügel) gesichert werden.

Da in den Versuchsserien S 1, S 2, S 3 und S 4 keine Längsrissbildung im Bereich der Ø40 mm Längsbewehrung beobachtete werden konnte, scheint eine Betondeckung zur Sicherstellung des Verbunds von $1,0 \cdot \phi_l$ für Längsbewehrung Ø40 mm unter Druckbeanspruchung ausreichend. Jedoch sollten experimentelle Untersuchungen zu schlechten Verbundbedingungen durchgeführt werden. Möglicherweise ist die Diskrepanz zwischen experimenteller und rechnerischer Verformung bei der Versuchsserie S 2 (s. Abschnitt 3.4.3) hierdurch hervorgerufen worden.

Da in der Versuchsserie S 4 zur Druckstoßausbildung mittels Übergreifungsstoß nie die rechnerische Traglast erreicht werden konnte und entweder ein Durchstanzversagen (S 4.1 – S 4.4) oder ein Verbundversagen (S 4.5) auftrat, sollte nach Meinung der Verfasser die Zusatzregel I, die Druckübergreifungsstöße bei großen Stabdurchmessern nicht zulässt (vgl. EC2+NA Abschnitt 8.8 (4)), vorerst beibehalten werden.

4.5 Zusammenfassung der Vorschläge

In Tabelle 4-1 sind die Reglungen nach EC2+NA und die Vorschläge zusammengefasst dargestellt.

Erläuterung		EC2-	Vorschlag		
		Ø12 – Ø32 mm	Zusatz für Ø40 mm	Ø40 mm	Regel
Form	mind. Bauteil- dicke $min(h, b) \ge \begin{cases} 200 \ mm \\ 120 \ mm \ (FT) \end{cases}$ $min(h)$		$min(h, b) \ge 15 \cdot \phi_l$	$min(h,b) \ge \begin{cases} 200 \ mm \\ 120 \ mm \ (FT) \end{cases}$	А
Beton	mind. Beton- festigkeitsklasse	C16/20		C16/20	В
	max. Beton- festigkeitsklasse	C100/115		C100/115	С
Bügelbew.	mind. Durch- messer	$\phi_w \ge \begin{cases} 6 \ mm \\ 0,25 \cdot \phi_l \end{cases}$	$\phi_w \ge 12 \ mm$	$\phi_w \ge \begin{cases} 6 mm \\ 0,25 \cdot \phi_l \end{cases}$	D
	max. Abstand – allgemein	$s_{cl,tmax} \leq \begin{cases} 12 \cdot \phi_l \\ min(h,b) \\ 300 \ mm \end{cases}$	$s_{cl,tmax} \leq \begin{cases} \min(h/2, b/2) \\ 300 \ mm \end{cases}$	$s_{cl,tmax} \leq \begin{cases} 12 \cdot \phi_l \\ min(h,b) \\ 300 \ mm \end{cases}$	E
Längsbew.	max. Quer- schnittsfläche	$A_{s,max} = 0,09 \cdot A_c$		$A_{s,max} = 0,09 \cdot A_c$	F
	max. Anzahl je Ecke	5		3	G
	max. Abstand zur Ecke	$s_{ct,lmax} \le 15 \cdot \phi_w$		$s_{ct,lmax} \le 15 \cdot \phi_w$	Н
	Übergreifungs- stoß	zulässig	nicht zulässig	nicht zulässig	I

 Tabelle 4-1:
 Konstruktionsregeln f
 f
 vitzen nach EC2+NA und Vorschl
 äge

5 Zusammenfassung

Die Verwendung von Betonstählen mit großen Durchmessern > Ø32 mm kann in Hinblick auf Druckglieder aus folgenden Gründen sinnvoll sein:

- Vereinfachung in der Bewehrungsführung bei hochbewehrten Konstruktionen
- Verringerung der Anzahl der Bewehrungslagen und damit des Verlegeaufwands
- Vereinfachung beim Betonieren und Verdichten aufgrund der größeren Stababstände
- Vermeidung von Stabbündeln und komplexen Stoß- und Übergreifungskonstruktionen

Da die in EC2+NA /3/, /4/ enthaltenen Zusatzregelungen für Ø40 mm auf der Übertragung der normativen Konstruktionsregeln für Stabbündel sowie auf der Übernahme der besonderen Konstruktionsregeln aus der Allgemeinen bauaufsichtlichen Zulassung Z-1.1-106 /6/ beruhen und experimentell nicht vollständig abgesichert sind, wurden experimentelle und theoretische Untersuchungen an normal- und hochfesten Beton-Druckgliedern mit Rechteckquerschnitt und Längsbewehrungsstäben Ø40 mm durchgeführt.

Die Versuche sollten folgende Punkte klären:

- Mindestbauteildicke
- Mindest- und maximale Betonfestigkeit
- Bügeldurchmesser und Bügelabstände
- Maximale Anzahl von Längsstäben je Bügelecke
- Druckstöße und Bewehrungsgrad

Das Versuchsprogramm gliederte sich in 5 Versuchsserien (S 0 bis S 4) mit insgesamt 23 Versuchen. Die Prüfung erfolgte in der Regel in einem 10-MN- oder 30-MN-Druckprüfstand unter einachsig exzentrischem Längsdruck. Eine Ausnahme hierzu bildeten zwei Versuche zur Druckstoßausbildung (S 4.4 und S 4.5), die unter zentrischem Längsdruck geprüft wurden.

In den Versuchen der Serie S 0 bis S 3 konnten bei den normalfesten Stützen im Allgemeinen ein robustes und bei den hochfesten Stützen ein relativ schlagartiges (sprödes) Versagen auf Betondruck beobachtet werden. In Abhängigkeit des Bügel- und Längsbewehrungsgrads ergab sich nach Erreichen der maximalen Traglast eine Resttragfähigkeit, die durch einen eingeführten Faktor $\beta_{1,33}$ quantifiziert wurde.

Desweiteren konnte beobachtet werden, dass die Knickgefahr der Längsbewehrung vom verwendeten Bügel- und Längsbewehrungsgrad abhängig war.

Bei einigen Versuchen mit großem Bügelabstand trat ein Öffnen der Bügelschlösser auf. Bei allen anderen Versuchen blieben die Bügelschlösser geschlossen.

In den Versuchen zur Druckstoßausbildung (Versuchsserie S 4) versagten die Versuchskörper nicht auf Betondruckbruch, sondern infolge Durchstanzen der gestoßenen Längsbewehrung oder Verbundbruch im Bereich der Übergreifungslänge.

Im Anschluss an die experimentellen Untersuchungen wurden die Versuchsstützen mit nichtlinearen Stabwerksberechnungen nachgerechnet. Je Versuch wurden zwei Berechnungen durchgeführt. Bei Nachrechnung I wurden die Materialkennwerte der Begleitkörperprüfungen und bei Nachrechnung II die Normwerte und rechnerischen Idealisierungen angesetzt. Beide Nachrechnungsarten zeigten eine gute Übereinstimmung mit den experimentellen Traglasten. In der Versuchsserie S 2 wurden im Zuge der Nachrechnungen jedoch steifere Last-Verformungs-Kurven ermittelt. Es wird vermutet, dass infolge der Stützenabmessungen und der liegenden Betonage an der Betonieroberseite (und damit an der am stärksten gedrückten Seite) schlechtere Verbundbedingungen und Betoneigenschaften vorlagen, wodurch im Versuch größere Verformungen auftraten. Im Rahmen des Forschungsprojektes konnte dieser Sachverhalt allerdings nicht vollständig geklärt werden.

Auf Basis der experimentellen und theoretischen Untersuchungen wurden für die Regeln A, D und E weitergehende Vorschläge formuliert. Die Regeln B, C, F, H und I konnten bestätigt werden. Bei Regel G ist nach Meinung der Verfasser eine zutreffendere Formulierung notwendig. Die gewonnenen Erkenntnisse könnten als Grundlage für eine Anpassung der Konstruktionsregeln dienen und auf diese Weise die baupraktische Anwendung von Bewehrungsstäben Ø40 mm fördern.

6 Offene Fragen

In Bezug auf die zulässige Stabanzahl je Bügelecke (Regel G) sollten weitere Versuche mit quadratischem Querschnitt und fünf Längseisen Ø40 mm je Bügelecke durchgeführt werden.

Die Ausführung von Übergreifungsstößen (Regel I) bedarf einer systematischen Untersuchung. Hierbei ist u. a. zu klären, wie lang die Übergreifungslänge ausgeführt werden muss, um den Spitzendruck auf ein unkritisches Maß zu reduzieren. Ferner sollten alternative Druckstoßausbildungen und ggf. Verkröpfungen untersucht werden.

Desweiteren sollten Untersuchungen zum Einfluss von Dauerbeanspruchungen (Kriechen mit Lastzunahme in der Längsbewehrung) und außergewöhnlichen Einwirkungen (Wechsel- oder Brandbeanspruchung) durchgeführt werden.

7 Literaturverzeichnis

- /1/ Empelmann, M.; Oettel, V.: Bewehrungstechniken nach EC2. In: beton 63 (10/2013), S. 386-387.
- /2/ Empelmann, M.; Oettel, V.; Kim, S.: Innovative Stützen für den Hochhausbau. In: Massivbau im Wandel, Festschrift zum 60. Geburtstag von Josef Hegger. S. 123-134, Ernst & Sohn, Berlin, 2014.
- /3/ DIN EN 1992-1-1: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, Ausgabe 01/2011.
- /4/ DIN EN 1992-1-1/NA: Nationaler Anhang National festgelegte Parameter Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, Ausgabe 01/2011.
- /5/ DIN 1045-1: Tragwerke aus Beton, Stahlbeton und Spannbeton Teil 1: Bemessung uns Konstruktion, Ausgabe 08/2008.
- /6/ Allgemeine bauaufsichtliche Zulassung Z-1.1-106: Betonstabstahl BSt 500 S (B) mit Gewinderippen SAS 500 Nenndurchmesser: 40 und 50 mm, Deutsches Institut für Bautechnik, 2009.
- /7/ Bachmann, H.; et al.: Das neue Bewehrungssystem; Druckglieder mit hochfestem Betonstahl SAS 670/800 – Teil II: Opernturm Frankfurt - Anwendung. In: Beton- und Stahlbetonbau 103 (2008), Heft 8, S. 530-540.
- /8/ Jungwirth, D.; Kern, G.: Verwendung von Bewehrungsstäben mit großen Durchmesser bzw. hohen Festigkeiten am Beispiel des Dywidag-Gewindestabes. In: Beton- und Stahlbetonbau 72 (1977), Heft 10, S. 237-243.
- /9/ DIN EN 12390: Prüfung von Festbeton, 2000 bis 2010.
- /10/ DIN 1048-5: Prüfverfahren für Beton; Festbeton, gesondert hergestellte Probekörper, 1991.
- /11/ DIN EN ISO 6892-1: Metallische Werkstoffe Zugversuch Teil 1: Pr
 üfverfahren bei Raumtemperatur (ISO 6892-1:2009), 2009.
- /12/ DIN 488: Betonstahl, 2009.
- /13/ DIN EN 13225: Betonfertigteile Stabförmige tragende Bauteile, 2010.
- /14/ Steven, G.; Empelmann, M.: Gedrungene Stützen aus UHPFRC mit hochfester Längsbewehrung. In: Beton- und Stahlbeton 109 (2014), Heft 5, Seiten 344-354.
- /15/ Quast, U.; Pfeifer, U.: INCA2 (Interactive Nonlinear Cross Section Analysis Biaxial) und STAB2DNL, www.tuharburg.de/mb.
- /16/ Leonhardt, F.; Teichen, K.-T.: Druck-Stöße von Bewehrungsstäben und Stahlbetonstützen mit hochfestem Stahl St 90. Deutscher Ausschuss für Stahlbeton, Heft 222; Beuth Verlag GmbH, Berlin, 1972.
- /17/ Eligehausen, R.; Kreller, H.; Langer, P.: Untersuchungen zum Verbundverhalten gerippter Betonstähle mit praxisüblicher Betonüberdeckung. Mittteilungen aus dem Institut für Werkstoffe im Bauwesen 1989/5, Universität Stuttgart, 1989.
- /18/ Müller, F. P.; Eisenbiegler, W.: Ermittlung der Verbundspannung an gedrückten einbetonierten Betonstählen. Deutscher Ausschuss für Stahlbeton, Heft 319; Beuth Verlag GmbH, Berlin, 1981.
- /19/ Burkhardt, C. J.: Zum Tragverhalten von Übergreifungsstößen in hochfesten Beton. Dissertation, Institut für Massivbau, RWTH Aachen, Heft 10, 2000.

Anhang

A1 Materialkennwerte der einzelnen Versuche

Die Festbetoneigenschaften der einzelnen Versuche können Tabelle A1-1 entnommen werden. Bei den Versuchskörpern S 4.1 bis S 4.3 konnte die E-Modul-Prüfung aufgrund eines Maschinendefekts nicht durchgeführt werden.

Bezeichnung	Würfeldruckfestigkeit f _{cm,cube} [N/mm ²]	Zylinderdruckfestigkeit <i>f_{cm,cyl.}</i> [N/mm ²]	E-Modul E _{cm} [N/mm²]	Spaltzugfestigkeit f _{ct,sp} [N/mm ²]
S 0.1	40,0	33,3	27.500	2,8
S 0.2	40,8	33,3	26.700	2,7
S 0.3	101,8	86,1	41.200	4,2
S 1.1	40,0	33,3	27.500	2,8
S 1.2	63,7	50,8	31.600	3,5
S 1.3	95,8	86,6	39.300	4,4
S 2.1	35,5	32,1	25.900	2,4
S 2.2	37,8	30,1	25.000	2,7
S 2.3	35,5	32,1	25.900	2,4
S 2.4	37,8	30,1	25.000	2,7
S 2.5	101,4	84,9	40.900	4,2
S 2.6	99,9	83,7	41.600	3,9
S 3.1	44,4	34,1	27.800	2,6
S 3.2	43,6	36,0	27.700	2,6
S 3.3	37,0	31,1	28.200	2,5
S 3.4	38,5	33,7	30.500	3,0
S 3.5	83,4	81,9	42.700	5,1
S 3.6	100,0	91,0	43.500	4,7
S 4.1	39,3	31,8	-	3,0
S 4.2	39,9	32,4	-	2,4
S 4.3	39,8	32,7	-	2,8
S 4.4	43,3	33,2	27.400	2,8
S 4.5	42,2	33,0	29.300	2,9

Tabelle A1-1: Festbetoneigenschaften der einzelnen Versuche
Die Kennwerte der verwendeten Bügel- und Längsbewehrung kann je Versuchsserie Tabelle A1-2 und Tabelle A1-3 entnommen werden.

Bezeichnung	Sorte	Durchmesser ϕ_w [mm]	Streckgrenze R _{eH} [N/mm ²]	Zugfestigkeit R _m [N/mm ²]	Verhältnis R _m /R _{eH} [-]	Bezogene Rippenfläche <i>f_{Rm}</i> [-]
S 0	А	6	557	595	1,07	-
S 1	В	8	544	615	1,13	-
S 2	В	8	543	618	1,14	-
	В	12	542	675	1,24	-
C 0	В	8	549	621	1,13	-
53	В	12	542	675	1,24	-
S 4	В	8	533	600	1,13	0,056
	В	12	563	690	1,23	0,080

 Tabelle A1-2:
 Eigenschaften der Bügelbewehrung der einzelnen Versuchsserien

Tabelle A1-3: Eigenschaften der Längsbewehrung der einzelnen Versuchsserien

Bezeichnung	Sorte	Durchmesser ϕ_l [mm]	Streckgrenze R _{eH} [N/mm ²]	Zugfestigkeit R _m [N/mm ²]	Verhältnis R _m /R _{eH} [-]	Bezogene Rippenfläche <i>f_{Rm}</i> [-]
S 0	В	20	526	648	1,23	-
S 1	В	40	575	691	1,20	-
S 2	В	40	569	691	1,21	-
S 3	В	40	570	691	1,21	-
S 4	В	40	573	691	1,21	0,072

A2 Dokumentation der Versuchserie S 0

A2.1 Versuchskörper S 0.1

S 0.1

Bild A2.1-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A2.1-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A2.1-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A2.1-4: Bruchrissbild

Tabelle A2.1-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit f _{cm,cyl.} [N/mm ²]		33,3	33,3
E-Modul E _{cm}	[N/mm ²]	27.500	31.561
Grenzdehnung ε_{c1}	[‰]	-2,08	-2,08
Bruchdehnung ε_{cu1}	[‰]	-3,50	3,50
σ-ε-Linie Längsbewehrung	[-]	blaue Linie Bild 2-3	EC2+NA Bild 3.8

A2.2 Versuchskörper S 0.2

Bild A2.2-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A2.2-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A2.2-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A2.2-4: Bruchrissbild

Tabelle A2.2-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit f _{cm,cyl.} [N/mm ²]		33,3	33,3
E-Modul E _{cm} [N/mr		26.700	31.573
Grenzdehnung ε_{c1}	[‰]	-2,08	-2,08
Bruchdehnung ε_{cu1}	[‰]	-3,50	-3,50
σ-ε-Linie Längsbewehrung	[-]	blaue Linie Bild 2-3	EC2+NA Bild 3.8

A2.3 Versuchskörper S 0.3

Bild A2.3-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A2.3-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A2.3-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A2.3-4: Bruchrissbild

Tabelle A2.3-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit $f_{cm,cyl.}$ [N/mm ²]		86,1	86,1
E-Modul E _{cm} [N/mm ²		41.200	41.963
Grenzdehnung ε_{c1}	[‰]	-2,79	-2,79
Bruchdehnung ε_{cu1}	[‰]	-2,81	-2,81
σ-ε-Linie Längsbewehrung	[-]	blaue Linie Bild 2-3	EC2+NA Bild 3.8

A3 **Dokumentation der Versuchserie S1**

A3.1 Versuchskörper S 1.1

S 1.1

Bild A3.1-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A3.1-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A3.1-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A3.1-4: Bruchrissbild

Tabelle A3.1-1	:Berechnungsparameter	der Nachrechnung	I und der Nach	rechnung II
		J		

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit $f_{cm,cyl.}$ [N/mm ²]		33,3	33,3
E-Modul E _{cm} [N/mm ²		27.500	31.561
Grenzdehnung ε_{c1}	[‰]	-2,08	-2,08
Bruchdehnung ε_{cu1} [‰]		-3,50	-3,50
σ-ε-Linie Längsbewehrung [-]		schwarze Linie Bild 2-3	rote Linie Bild 2-3

A3.2 Versuchskörper S 1.2

Bild A3.2-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A3.2-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A3.2-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A3.2-4: Bruchrissbild

Tabelle A3.2-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit f _{cm,cyl.} [N/mm ²]		50,8	80,8
E-Modul E _{cm}	[N/mm ²]	31.600	35.825
Grenzdehnung ε_{c1}	[‰]	-2,37	-2,37
Bruchdehnung ε_{cu1}	[‰]	-3,50	-3,50
σ-ε-Linie Längsbewehrung [-]		schwarze Linie Bild 2-3	rote Linie Bild 2-3

A3.3 Versuchskörper S 1.3

Bild A3.3-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A3.3-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A3.3-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A3.3-4: Bruchrissbild

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit $f_{cm,cyl.}$ [N/mm ²]		86,6	33,3
E-Modul E _{cm}	[N/mm ²]	39.300	42.041
Grenzdehnung ε_{c1}	[‰]	-2,79	-2,79
Bruchdehnung ε_{cu1}	[‰]	-2,80	-2,80
σ-ε-Linie Längsbewehrung [-]		schwarze Linie Bild 2-3	rote Linie Bild 2-3

A4 Dokumentation der Versuchserie S 2

A4.1 Versuchskörper S 2.1

Bild A4.1-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A4.1-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A4.1-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A4.1-4: Bruchrissbild

Tabelle A4.1-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit $f_{cm,cyl.}$ [N/mm ²]		32,1	32,1
E-Modul E _{cm}	[N/mm ²]	25.900	31.225
Grenzdehnung ε_{c1}	[‰]	-2,05	-2,05
Bruchdehnung ε_{cu1}	[‰]	-3,50	-3,50
σ-ε-Linie Längsbewehrung [-]		schwarze Linie Bild 2-3	rote Linie Bild 2-3

A4.2 Versuchskörper S 2.2

Bild A4.2-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A4.2-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A4.2-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A4.2-4: Bruchrissbild

Tabelle A4.2-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit f _{cm,cyl.} [N/mm ²]		30,1	30,1
E-Modul E _{cm}	[N/mm ²]	25.033	30.0789
Grenzdehnung ε_{c1}	[‰]	-2,02	-2,02
Bruchdehnung ε_{cu1}	[‰]	-3,50	-3,50
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

A4.3 Versuchskörper S 2.3

Bild A4.3-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A4.3-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A4.3-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A4.3-4: Bruchrissbild

Tabelle A4.3-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit $f_{cm,cyl.}$	[N/mm ²]	32,1	32,1
E-Modul E _{cm}	[N/mm ²]	25.900	31.225
Grenzdehnung ε_{c1}	[‰]	-2,05	-2,05
Bruchdehnung ε_{cu1}	[‰]	-3,50	-3,50
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

A4.4 Versuchskörper S 2.4

Bild A4.4-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A4.4-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A4.4-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A4.4-4: Bruchrissbild

Tabelle A4.4-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit $f_{cm,cyl.}$	[N/mm ²]	30,1	30,1
E-Modul E _{cm}	[N/mm ²]	25.033	30.789
Grenzdehnung ε_{c1}	[‰]	-2,02	-2,02
Bruchdehnung ε_{cu1}	[‰]	-3,50	-3,50
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

A4.5 Versuchskörper S 2.5

Bild A4.5-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A4.5-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A4.5-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A4.5-4: Bruchrissbild

Tabelle A4.5-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit $f_{cm,cyl.}$	[N/mm ²]	84,9	84,9
E-Modul E _{cm}	[N/mm ²]	40.900	41.792
Grenzdehnung ε_{c1}	[‰]	-2,77	-2,77
Bruchdehnung ε_{cu1}	[‰]	-2,81	-2,81
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

A4.6 Versuchskörper S 2.6

Bild A4.6-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A4.6-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A4.6-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A4.6-4: Bruchrissbild

Tabelle A4.6-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit $f_{cm,cyl.}$	[N/mm ²]	83,7	83,7
E-Modul E _{cm}	[N/mm ²]	41.600	41.642
Grenzdehnung ε_{c1}	[‰]	-2,76	-2,76
Bruchdehnung ε_{cu1}	[‰]	-2,81	-2,81
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

A5 Dokumentation der Versuchserie S 3

S 3.1 S 3.1 47.4 6.3 Betonierrichtung Bü Ø12 6.3×11.4 6.3× 12.0 2.3 × 11.4 6.3 19 55.0 12.0 0.6 6.0 Ň 55 60 2.5 2.5 55.0 *) Bügelschloss 6 6 3 6 6 3 O-1-B *) Bügelschloss N-1-B 30 0-1-S ŝ W-1/2-B N-1-S O-1/2-B 30 30 N-1/2-B *) Bügelschloss S/O-M-S-a S/W-M-S-a 6 30/ 30 -S S-M-B N/O-M-S-a N/W-M-S-a N-2-S O-M-B W-M-B 30 8 N-M-B 13/6/6/ 3,6,6

A5.1 Versuchskörper S 3.1

Bild A5.1-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A5.1-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A5.1-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A5.1-4: Bruchrissbild

Tabelle A5.1-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit f _{cm,cyl.}	[N/mm ²]	34,1	34,1
E-Modul E _{cm}	[N/mm ²]	27.800	31.787
Grenzdehnung ε_{c1}	[‰]	-2,09	-2,09
Bruchdehnung ε_{cu1}	[‰]	-3,50	-3,50
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

Bild A5.2-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A5.2-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A5.2-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A5.2-4: Bruchrissbild

Tabelle A5.2-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit f _{cm,cyl.}	[N/mm ²]	36,0	36,0
E-Modul E _{cm}	[N/mm ²]	27.700	32.308
Grenzdehnung ε_{c1}	[‰]	-2,13	-2,13
Bruchdehnung ε_{cu1}	[‰]	-3,50	-3,50
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

Bild A5.3-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A5.3-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A5.3-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A5.3-4: Bruchrissbild

Tabelle A5.3-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit f _{cm,cyl.}	[N/mm ²]	31,1	31,1
E-Modul E _{cm}	[N/mm ²]	28.200	30.921
Grenzdehnung ε_{c1}	[‰]	-2,03	-2,03
Bruchdehnung ε_{cu1}	[‰]	-3,50	-3,50
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

Bild A5.4-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A5.4-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A5.4-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A5.4-4: Bruchrissbild

Tabelle A5.4-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit f _{cm,cyl.}	[N/mm ²]	33,7	33,7
E-Modul E _{cm}	[N/mm ²]	30.500	31.625
Grenzdehnung ε_{c1}	[‰]	-2,08	-2,08
Bruchdehnung ε_{cu1}	[‰]	-3,50	-3,50
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

A5.5 Versuchskörper S 3.5

Bild A5.5-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A5.5-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A5.5-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A5.5-4: Bruchrissbild

Tabelle A5.5-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit f _{cm,cyl.}	[N/mm ²]	81,9	81,9
E-Modul E _{cm}	[N/mm ²]	42.700	41.344
Grenzdehnung ε_{c1}	[‰]	-2,74	-2,74
Bruchdehnung ε_{cu1}	[‰]	-2,82	-2,82
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

Bild A5.6-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A5.6-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A5.6-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A5.6-4: Bruchrissbild

Tabelle A5.6-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit f _{cm,cyl.}	[N/mm ²]	91,0	91,0
E-Modul E _{cm}	[N/mm ²]	43.500	42.671
Grenzdehnung ε_{c1}	[‰]	-2,80	-2,80
Bruchdehnung ε_{cu1}	[‰]	-2,80	-2,80
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

A6 Dokumentation der Versuchserie S 4

A6.1 Versuchskörper S 4.1

Bild A6.1-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A6.1-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A6.1-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A6.1-4: Bruchrissbild

Tabelle A6.1-1:Berechnungsparameter	der Nachrechnung	I und der Nachrechnung II
-------------------------------------	------------------	---------------------------

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit $f_{cm,cyl.}$	[N/mm ²]	31,8	31,8
E-Modul E _{cm}	[N/mm ²]	26.500	31.128
Grenzdehnung ε_{c1}	[‰]	2,05	2,05
Bruchdehnung ε_{cu1}	[‰]	3,50	3,50
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

Bild A6.2-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A6.2-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A6.2-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A6.2-4: Bruchrissbild

Tabelle A6.2-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit f _{cm,cyl.}	[N/mm ²]	32,4	32,4
E-Modul E _{cm}	[N/mm ²]	26.500	31.303
Grenzdehnung ε_{c1}	[‰]	2,06	2,06
Bruchdehnung ε_{cu1}	[‰]	3,50	3,50
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

Bild A6.3-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A6.3-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A6.3-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A6.3-4: Bruchrissbild

Tabelle A6.3-1:Berechnungsparameter de	Nachrechnung I und der Nachrechnung II
--	--

Bezeichnung		Nachrechnung I	Nachrechnung II
Zylinderdruckfestigkeit f _{cm,cyl.}	[N/mm ²]	32,7	32,7
E-Modul E _{cm}	[N/mm ²]	26.500	31.390
Grenzdehnung ε_{c1}	[‰]	2,06	2,06
Bruchdehnung ε_{cu1}	[‰]	3,50	3,50
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3

Bild A6.4-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A6.4-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A6.4-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Tabelle A6.4-1:Berechnungsparameter der Nachrechnung I und der Nachrechnung II

Bezeichnung		Nachrechnung I	Nachrechnung II	
Zylinderdruckfestigkeit $f_{cm,cyl.}$	[N/mm ²]	33,2	33,2	
E-Modul E _{cm}	[N/mm ²]	27.400	31.533	
Grenzdehnung ε_{c1}	[‰]	2,07	2,07	
Bruchdehnung ε_{cu1}	[‰]	3,50	3,50	
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3	

Bild A6.5-1: Messstellenplan Stahl-DMS (links) und Beton-DMS (rechts)

Bild A6.5-2: Gemessene Stauchung Längsbewehrung (links) und Beton (rechts)

Bild A6.5-3: Gemessene Dehnung Bügelbewehrung (links) und Querdehnung Beton (rechts)

Bild A6.5-4: Bruchrissbild

Tabelle A6.5-1:Berechnungsparameter	der Nachrechnung	I und der Nachrechnung II
-------------------------------------	------------------	---------------------------

Bezeichnung		Nachrechnung I	Nachrechnung II	
Zylinderdruckfestigkeit <i>f_{cm,cyl}</i> .	[N/mm ²]	33,0	33,0	
E-Modul E _{cm}	[N/mm ²]	29.200	31.476	
Grenzdehnung ε_{c1}	[‰]	2,07	2,07	
Bruchdehnung ε_{cu1}	[‰]	3,50	3,50	
σ-ε-Linie Längsbewehrung	[-]	schwarze Linie Bild 2-3	rote Linie Bild 2-3	